
4

Computing Optimal Repairs for Functional Dependencies

ESTER LIVSHITS and BENNY KIMELFELD, Technion–Israel Institute of Technology, Israel

SUDEEPA ROY, Duke University, USA

We investigate the complexity of computing an optimal repair of an inconsistent database, in the case where

integrity constraints are Functional Dependencies (FDs). We focus on two types of repairs: an optimal subset

repair (optimal S-repair), which is obtained by a minimum number of tuple deletions, and an optimal update

repair (optimal U-repair), which is obtained by a minimum number of value (cell) updates. For computing

an optimal S-repair, we present a polynomial-time algorithm that succeeds on certain sets of FDs and fails

on others. We prove the following about the algorithm. When it succeeds, it can also incorporate weighted

tuples and duplicate tuples. When it fails, the problem is NP-hard and, in fact, APX-complete (hence, cannot

be approximated better than some constant). Thus, we establish a dichotomy in the complexity of computing

an optimal S-repair. We present general analysis techniques for the complexity of computing an optimal U-

repair, some based on the dichotomy for S-repairs. We also draw a connection to a past dichotomy in the

complexity of finding a “most probable database” that satisfies a set of FDs with a single attribute on the

left-hand side; the case of general FDs was left open, and we show how our dichotomy provides the missing

generalization and thereby settles the open problem.

CCS Concepts: • Information systems → Inconsistent data; Data cleaning; • Theory of computation

→ Incomplete, inconsistent, and uncertain databases;

Additional Key Words and Phrases: Inconsistent databases, database cleaning, optimal repairs, cardinality

repairs, value repairs, functional dependencies, dichotomy, approximation

ACM Reference format:

Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. 2020. Computing Optimal Repairs for Functional Depen-

dencies. ACM Trans. Database Syst. 45, 1, Article 4 (February 2020), 46 pages.

https://doi.org/10.1145/3360904

1 INTRODUCTION

Database inconsistency arises in a variety of scenarios and for different reasons. Data may be
collected from imprecise sources (social encyclopedias/networks, sensors attached to appliances,
cameras, etc.) via imprecise procedures (natural-language processing, signal processing, image
analysis, etc.). Inconsistency may also arise when integrating databases of different organizations

The work of Benny Kimelfeld and Ester Livshits was supported by the Israel Science Foundation (ISF) Grant No. 1295/15.

The work of Ester Livshits was also supported by the Technion Hiroshi Fujiwara Cyber Security Research Center and the

Israel Cyber Bureau. The work of Sudeepa Roy was supported by NSF Awards No. IIS-1552538 and No. IIS-1703431, and

NIH Award No. 1R01EB025021-01.

Authors’ addresses: E. Livshits and B. Kimelfeld, Computer Science Department, Technion, Haifa 3200003, Israel; emails:

{esterliv, bennyk}@cs.technion.ac.il; S. Roy, 308 Research Drive, Department of Computer Science, Duke University, LSRC

Building, Campus Box 90129, Durham, NC 27708, USA; email: sudeepa@cs.duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0362-5915/2020/02-ART4 $15.00

https://doi.org/10.1145/3360904

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

https://doi.org/10.1145/3360904
mailto:permissions@acm.org
https://doi.org/10.1145/3360904

4:2 E. Livshits et al.

with conflicting information, or even consistent information in conflicting formats. Arenas et al. [5]
introduced a principled approach to managing inconsistency via the notions of repairs and consis-
tent query answering. An inconsistent database is a databaseD that violates an underlying collection
of integrity constraints, a repair is a consistent database D ′ that is obtained from D through a min-
imal sequence of editing operations, and the consistent answers to a query are the answers found
in every repair D ′.

Instantiations of the repair framework differ in their definitions of integrity constraints, oper-
ations, and minimality [1]. Common types of constraints are denial constraints [25] that include
the classic Functional Dependencies (FDs), and inclusion dependencies [15] that include the ref-
erential (foreign-key) constraints. An operation can be a deletion of a tuple, an insertion of a tuple,
and an update of an attribute (cell) value. Minimality can be either local—no strict subset of the
operations achieves consistency, or global—no smaller (or cheaper) subset achieves consistency.
For example, if only tuple deletions are allowed, then a subset repair [16] corresponds to a local
minimum (restoring any deleted tuple causes inconsistency) and a cardinality repair [38] corre-
sponds to a global minimum (consistency cannot be gained by fewer tuple deletions). The cost of
operations may differ between tuples; this can represent different levels of trust that we have in
the tuples [33, 38].

In this article, we focus on global minima under FDs via tuple deletions and value updates.
Each tuple is associated with a weight that determines the cost of its deletion or a change of a
single value. We study the complexity of computing a minimum repair in two settings. In the
first setting, only tuple deletions are allowed, and therefore, we seek the weighted version of the
cardinality repair, also referred to as weight-maximally consistent subset [22] and maximum weight
repairs [14]. In the second setting, only value updates are allowed, that is, we seek what Kolahi and
Lakshmanan [33] refer to as an “optimum V-repair.” We refer to the two challenges as computing
an optimal subset repair (optimal S-repair) and computing an optimal update repair (optimal U-
repair), respectively. These problems were recently shown to be special cases of the most likely
intention problem in the framework of probabilistic unclean databases [40] that establishes the
theoretical basis for the HoloClean data cleaning system [39]. In this model, an unclean database
is viewed as a result of a two-step process, similarly to the noisy-channel model: an intended clean
database (“intention”) is first generated, and then noise is introduced.

Indeed, the importance of computing an optimal repair arises in the challenge of data clean-
ing [24]—eliminate errors and dirt (manifested as inconsistencies) from the database. Specifically,
our motivation is twofold. The obvious motivation is in fully automated cleaning, where an op-
timal repair is the best candidate, assuming that the system is aware of only the constraints and
tuple weights. The second motivation comes from the more realistic practice of iterative, human-
in-the-loop cleaning [6, 10, 19, 26]. As proposed by Bertossi [11, 12], in such systems the cost of
an optimal repair can serve as a measure of inconsistency, i.e., an educated estimate for the extent
to which the database is dirty and, consequently, the amount of effort needed for the completion
of cleaning. Livshits et al. [35] showed that this measure stands out among other inconsistency
measures for progress estimation in data cleaning systems, as it satisfies some very natural prop-
erties for such measures. A minimum-distance measure was also introduced by Grant et al. [27]
as a measure of inconsistency for knowledge bases.

As our integrity constraints are FDs, it suffices to consider a database with a single relation,
which we call here a table. In a general database, our results can be applied to each relation indi-
vidually. A table T conforms to a relational schema R (A1, . . . ,Ak) where each Ai is an attribute.
Integrity is determined by a set Δ of FDs. Our complexity analysis focuses primarily on data com-
plexity, where R (A1, . . . ,Ak) and Δ are considered fixed and only T is considered input. Hence,
we have infinitely many optimization problems, one for each combination of R (A1, . . . ,Ak) and Δ.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:3

Table records have identifiers, as we wish to be able to determine easily which cells are updated
in a repair. In particular, we allow duplicate tuples (with distinct identifiers).

All of the negative results in this article hold even for the more restricted case where the tableT
is duplicate-free and all tuples have a unit weight, and all of the positive results hold even for the
more general case where we allow duplicates and distinct weights. Hence, all of our results apply
to any possible combination of these two properties.

We begin with the problem of computing an optimal S-repair. The problem is known to be
computationally hard for denial constraints [38]. As we discuss later, complexity results can be
inferred from prior work [28] for FDs with a single attribute on the left-hand side (lhs). For general
FDs, we present the algorithm OptSRepair (Algorithm 1). The algorithm seeks opportunities for
simplifying the problem by eliminating attributes and FDs, until no FDs are left (and then the
problem is trivial). For example, if all FDs share an attributeA on the lhs, then we can partition the
table according to A and solve the problem separately on each partition; but now, we can ignore A
in each partition. We refer to this simplification as “common lhs.” Two additional simplifications
are the “consensus” and “lhs marriage.” Importantly, the algorithm terminates in polynomial time,
even under combined complexity (where both the table and FDs are given as input).

However, OptSRepair may fail by reaching a nonempty set of FDs where no simplification can
be applied. We prove two properties of the algorithm. The first is soundness—if the algorithm suc-
ceeds, then it returns an optimal S-repair. More interesting is the property of completeness—if the
algorithm fails, then the problem is NP-hard. In fact, in this case the problem is APX-complete,
that is, for some α > 1 it is NP-hard to find a consistent subset with a cost lower than α times
the minimum, but some α ′ is achievable in polynomial time. More so, the problem remains APX-
complete if we assume that the table does not contain duplicates, and all tuples have a unit weight
(in which case we say that T is unweighted). Consequently, we establish the following dichotomy
in complexity for the space of combinations of schemas R (A1, . . . ,Ak) and FD sets Δ.

• If we can eliminate all nontrivial FDs in Δ with the three simplifications, then an optimal
S-repair can be computed in polynomial time using OptSRepair.

• Otherwise, computing an optimal S-repair is APX-complete, even for unweighted tables
without duplicates.

We then continue to the problem of computing an optimal U-repair. Here we do not estab-
lish a full dichotomy, but we make a substantial progress. We have found that proving hard-
ness results for U-repairs is far more subtle than for deletions. We identify conditions where
the complexity of computing an optimal U-repair and that of computing an optimal S-repair
coincide. One such condition is the common lhs (i.e., all FDs share an lhs attribute). Hence, in
this case, our dichotomy for S-repairs provides the precise test of tractability. We also show
decomposition techniques that extend the opportunities of using the dichotomy. As an exam-
ple, consider the schema Purchase(product, price, buyer, email, address) and Δ0 = {product→
price , buyer→ email}. We can decompose this problem into Δ1 = {product→ price} and Δ2 =

{buyer→ email}, and consider each Δi , for i = 1, 2, independently. The complexity of each Δi is
the same in both variants of optimal repairs, and so, polynomial time. Yet, these results do not
cover all sets of FDs. For example, let Δ3 = {email→ buyer , buyer→ address}. Kolahi and Lak-
shmanan [33] proved that under Δ3, computing an optimal U-repair is NP-hard. Our dichotomy
shows that it is also NP-hard (and also APX-complete) to compute an S-repair under Δ3. Yet, this
FD set does not fall in our coincidence cases.

Finally, we consider approximate repairing. For the case of an optimal S-repair, the problem eas-
ily reduces to that of weighted vertex cover, and hence, we get a polynomial-time 2-approximation
due to Bar-Yehuda and Even [8]. To approximate optimal U-repairs, we show an efficient

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:4 E. Livshits et al.

reduction to S-repairs, where the loss in approximation is linear in the number of attributes. Hence,
we obtain a constant-ratio approximation, where the constant has a linear dependence on the num-
ber of attributes. Kolahi and Lakshmanan [33] also gave an approximation for optimal U-repairs,
but their worst-case approximation can be quadratic in the number of attributes. We show an in-
finite sequence of FD sets where this gap is actually realized. However, we also show an infinite
sequence where our approximation is linear in the number of attributes, but theirs remains con-
stant. Hence, in general, the two approximations are incomparable, and we can combine the two
by running both approximations and taking the best.

Stepping outside the framework of repairs, a different approach to data cleaning is probabilis-
tic [4, 28, 39]. The idea is to define a probability space over possible clean databases, where the
probability of a database is determined by the extent to which it satisfies the integrity constraints.
The goal is to find a most probable database that, in turn, serves as the clean outcome. As an in-
stantiation, Gribkoff, Van den Broeck, and Suciu [28] identify probabilistic cleaning as the “Most
Probable Database” problem (MPD): given a tuple-independent probabilistic database [20, 42] and
a set of FDs, find the most probable database among those satisfying the FDs (or, put differently,
condition the probability space on consistency). They show a dichotomy for unary FDs, that is, FDs
with a single attribute on the left-hand side. The case of general (not necessarily unary) FDs has
been left open. It turns out that there are reductions from MPD to computing an optimal S-repair
and vice versa. Consequently, we are able to generalize their dichotomy to all FDs, and hence, fully
settle the open problem.

This article extends a conference publication of the authors [37]. Compared to the conference
version, the extension is as follows. First, we have strengthened the dichotomy in the complexity of
MPD with hardness of approximation on the negative side (Theorem 3.8). Second, we have added
all the proofs and intermediate results that were excluded from the conference paper. In particular,
Section 4 is new and contains the full proof of our main result—the dichotomy in the complexity
for S-repairs (Theorem 3.4). Moreover, we have added the proofs of Theorems 5.2, 5.5, 5.12, 5.14,
and 5.15 in Section 5.

The rest of the article is organized as follows. In Section 2, we give the basic definitions and
problem statements. We study the problem of computing an optimal S-repair in Section 3, where
we also discuss the connection to MPD. Then, we give the full proof of our dichotomy for S-repairs
in Section 4. In Section 5, we study the problem of computing an optimal U-repair. We conclude
and discuss future directions in Section 6.

2 PRELIMINARIES

We first present some basic terminology and notation that we use throughout the article.

2.1 Schemas and Tables

An instance of our data model is a single table where each tuple is associated with an identifier
and a weight that states how costly it is to change or delete the tuple. Such a table corresponds to
a relation schema that we denote by R (A1, . . . ,Ak), where R is the relation name and A1, . . . ,Ak

are distinct attributes. We say that R (A1, . . . ,Ak) is k-ary, since it has k attributes. When there is
no risk of confusion, we may refer to R (A1, . . . ,Ak) by simply R.

We use capital letters from the beginning of the English alphabet (e.g., A, B, C), possibly with
subscripts and/or superscripts, to denote individual attributes, and capital letters from the end of
the English alphabet (e.g., X , Y , Z), possibly with subscripts and/or superscripts, to denote sets of
attributes. We follow the convention of avoiding commas and curly braces when writing sets of
attributes (e.g., ABC instead of {A,B,C}).

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:5

Fig. 1. For Office(facility, room, floor, city) and FDs facility→ city and facility room→ floor, a table T ,

consistent subsets S1, S2 and S3, and consistent updatesU1,U2 andU3. Changed values are marked in yellow.

We assume a countably infinite domain Val of attribute values. By a tuple, we mean a sequence
of values in Val. A table T over R (A1, . . . ,Ak) has a collection ids(T) of (tuple) identifiers and it

maps every identifier i ∈ ids(T) to a tuple in Valk and a positive (non-zero) weight; we denote this
tuple by T [i] and this weight by wT (i). We denote by T [∗] the set of all tuples of T . We say that T
is:

• duplicate free if distinct tuples disagree on at least one attribute, that is, we haveT [i] � T [j]
whenever i � j;

• unweighted if all tuple weights are equal, that is, wT (i) = wT (j) for all identifiers i and j.

We use |T | to denote the number of tuple identifiers of T , that is, |T | def
= |ids(T) |. Let t =

(a1, . . . ,ak) be a tuple of T . We use t.Aj to refer to the value aj . If X = Ai1 , . . . ,Ai� is a sequence
of attributes in {A1, . . . ,Ak }, then t[X] denotes the tuple (t.Ai1 , . . . , t.Ai�).

Example 2.1. Our running example is based on the tables of Figure 1, over the schema
Office(facility, room, floor, city), describing the location of offices in an organization. For exam-
ple, the tuple T [1] corresponds to an office in room 322, in the third floor of the headquarters
(HQ) building, located in Paris. The meaning of the yellow background color will be clarified later.
The identifier of each tuple is shown on the leftmost (gray shaded) column, and its weight on the
rightmost column (also gray shaded). Note that table S2 is duplicate free and unweighted, table S1

is duplicate free but not unweighted, and table U2 is neither duplicate free nor unweighted.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:6 E. Livshits et al.

2.2 Functional Dependencies (FDs)

Let R (A1, . . . ,Ak) be a schema. As usual, an FD (over R) is an expression of the formX → Y where
X and Y are sequences of attributes of R. We refer to X as the left-hand side, or lhs, and to Y as the
right-hand side, or rhs. A tableT satisfies X → Y if every two tuples that agree on X also agree on
Y ; that is, for all t, s ∈ T [∗], if t[X] = s[X] then t[Y] = s[Y]. We say that T satisfies a set Δ of FDs
if T satisfies each FD in Δ; otherwise, T violates Δ.

An FDX → Y is entailed by Δ, denoted Δ |= X → Y , if every tableT that satisfies Δ also satisfies
the FDX → Y . The closure of Δ, denoted cl (Δ), is the set of all FDs that are entailed by Δ. The closure
of an attribute set X (w.r.t. Δ), denoted clΔ(X), is the set of all attributes A such that the FD X → A
is entailed by Δ. Two sets Δ1 and Δ2 of FDs are equivalent if they have the same closure (or in other
words, each FD in Δ1 is entailed by Δ2 and vice versa, or put differently, every table that satisfies
one also satisfies the other). An FD X → Y is trivial if Y ⊆ X ; otherwise, it is nontrivial. Note that
a trivial FD belongs to the closure of every set of FDs (including the empty one). We say that Δ is
trivial if Δ does not contain any nontrivial FDs (e.g., it is empty); otherwise, Δ is nontrivial.

Next, we give some non-standard notation that we need for this article. A common lhs of an FD
set Δ is an attribute A such that A ∈ X for all FDs X → Y in Δ. An FD set Δ is a chain if for every
two FDs X1 → Y1 and X2 → Y2 it is the case that X1 ⊆ X2 or X2 ⊆ X1. Livshits and Kimelfeld [36]
proved that the class of chain FD sets consists of precisely the FD sets in which the subset repairs,
which we define in Section 2.3, can be counted in polynomial time (assuming P � #P). The chain
FD sets will arise in this work as well.

Example 2.2. In our running example (Figure 1) the set Δ consists of the following FDs:

• facility→ city: a facility belongs to a single city.
• facility room→ floor: a room in a facility does not extend beyond one floor.

Note that the FDs allow for the same room number to occur in different facilities (possibly on
different floors, in different cities). The attribute facility is a common lhs. Moreover, Δ is a chain
FD set, since {facility} ⊆ {facility, room}. Table T (Figure 1(a)) violates Δ, and the other tables
(Figures 1(b)–1(g)) satisfy Δ.

An FD X → Y might be such that X is empty, and then we denote it by ∅ → Y and call it a
consensus FD. Satisfying the consensus FD ∅ → Y means that all tuples agree on Y , or in other
words, the column that corresponds to each attribute in Y consists of copies of the same value.
For example, ∅ → city means that all tuples have the same city. A consensus attribute (of Δ) is an
attribute in clΔ(∅), that is, an attributeA such that ∅ → A is implied by Δ. We say that Δ is consensus
free if it has no consensus attributes.

2.3 Repairs

Let R (A1, . . . ,Ak) be a schema, and letT be a table. A subset ofT is a table S that is obtained fromT
by eliminating tuples. More formally, table S is a subset ofT if ids(S) ⊆ ids(T), and for all i ∈ ids(S),
we have S[i] = T [i] and wS (i) = wT (i). If S is a subset ofT , then the distance from S toT , denoted
distsub (S,T), is the weighted sum of the tuples missing from S ; that is,

distsub (S,T)
def
=

∑
i ∈ids(T)\ids(S)

wT (i) .

A value update ofT (or just update ofT) is a tableU that is obtained fromT by changing attribute
values. More formally, a table U is an update of T if ids(U) = ids(T), and for all i ∈ ids(U), we
havewU (i) = wT (i). We adopt the definition of Kolahi and Lakshmanan [33] for the distance from
U to T . Specifically, if u and t are tuples of tables over R, then the Hamming distance H (u, t) is

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:7

the number of attributes in which u and t disagree, that is, H (u, t) = |{j | u.Aj � t.Aj }|. If U is
an update of T , then the distance from U to T , denoted distupd (U ,T), is the weighted Hamming
distance between U and T (where every changed value counts as the weight of the tuple); that is,

distupd (U ,T)
def
=

∑
i ∈ids(T)

wT (i) · H (T [i],U [i]) .

Let R (A1, . . . ,Ak) be a schema, let T be table, and let Δ be a set of FDs. A consistent subset (of
T w.r.t. Δ) is a subset S of T such that S |= Δ, and a consistent update (of T w.r.t. Δ) is an update U
ofT such thatU |= Δ. A subset repair, or S-repair, is a consistent subset that becomes inconsistent
whenever any deleted tuple is brought back. An update repair, or U-repair, is a consistent update
that becomes inconsistent if any updated value is restored to its original value in T . An optimal
subset repair of T , or just optimal S-repair, is a consistent subset S of T such that distsub (S,T) is
minimal among all consistent subsets ofT . Similarly, an optimal update repair ofT , or just optimal
U-repair, is a consistent update U of T such that distupd (U ,T) is minimal among all consistent
updates of T . When there is risk of ambiguity, we may stress that the optimal S-repair (or U-
repair) is of T and under Δ or under R and Δ. Every optimal S-repair (respectively, U-repair) is an
S-repair (respectively, U-repair), but not necessarily vice versa. Observe that a consistent subset
(respectively, update) can be transformed into a (not necessarily optimal) S-repair (respectively,
U-repair), with no increase of distance, in polynomial time.

We also define approximations of optimal repairs in the natural ways, as follows. For a number
α ≥ 1, an α-optimal S-repair is an S-repair S of T such that distsub (S,T) ≤ α · distsub (S ′,T) for
all S-repairs S ′ of T , and an α-optimal U-repair is a U-repair U of T such that distupd (U ,T) ≤
α · distupd (U ′,T) for all U-repairs U ′ of T . In particular, an optimal S-repair (respectively, optimal
U-repair) is the same as a 1-optimal S-repair (respectively, 1-optimal U-repair).

Example 2.3. In our running example (Figure 1), tables S1, S2, and S3 are consistent subsets, and
U1, U2, and U3 are consistent updates. For clarity, we marked with yellow shading the values that
were changed for constructing eachUi . We have distsub (S1,T) = 2, since the missing tuple (tuple 1)
has the weight 2. We also have distsub (S2,T) = 2 and distsub (S3,T) = 3. The reader can verify that
S1 and S2 are optimal S-repairs. Table S3 is not an optimal S-repair (and, in fact, not an S-repair at
all), since the second tuple can be added to S3 without violating consistency. Similarly, we have
distupd (U1,T) = 2, distupd (U2,T) = 3, and distupd (U3,T) = 4 (since U3 is obtained by changing two
values of a tuple of weight 2). The table U1 is an optimal U-repair, while U2 and U3 are not.

It should be noted that the values of an updateU of a tableT are not necessarily taken from the
active domain (i.e., values that occur in T). An example is the value F01 of table U1 in Figure 1(e).
This has implications on the complexity of computing optimal U-repairs. We discuss a restriction
on the allowed update values in Section 6.

2.4 Complexity

We adopt the conventional measure of data complexity, where the schema R (A1, . . . ,Ak) and de-
pendency set Δ are assumed to be fixed, and only the tableT is considered the input. In particular,
a “polynomial” running time may have an exponential dependency on k , as in O (|T |k). Note that
in our complexity analysis, we do not take into account the number of attributes, since it is as-
sumed to be fixed. Hence, each combination of R (A1, . . . ,Ak) and Δ defines a distinct problem of
finding an optimal repair (of the relevant type), and different combinations may feature different
computational complexities.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:8 E. Livshits et al.

Finding an optimal repair is a special case of an NP optimization problem [18]. To prove hard-
ness of approximation, we will characterize the complexity in terms of APX-hardness and APX-
completeness, and the formal definitions are as follows.

An optimization problem is a tuple (I, Sol, cost, goal) where I is a set of instances (i.e., input
encodings), Sol maps every instance x ∈ I into a space Sol (x) of solutions, cost is a function that
maps every x and y into a number cost(x ,y) ∈ Q, and goal ∈ {min,max} (i.e., the problem is ei-
ther a minimization or a maximization problem, respectively). Given an instance x , the goal is to
compute an optimal solution opt(x) ∈ Sol (x) that maximizes or minimizes cost(x ,y) over all so-
lutions y ∈ Sol (x), depending on the type of the problem. We say that (I, Sol, cost, goal) is an NP
optimization problem if:

• the length of solutions y ∈ Sol (x) is bounded by a polynomial in the length of x ;
• both x ∈ I and y ∈ Sol (x) can be decided in polynomial time;
• cost(x ,y) is computable in polynomial time, given x ∈ I and y ∈ Sol (x).

For α ≥ 1, an α-approximation for an optimization problem (I, Sol, cost, goal) is an algorithm
that, for every instance x , produces an α-optimal solution y, that is, a solution y ∈ Sol (x) such that

max{ cost(x,y)
cost(x,opt(x)) ,

cost(x,opt(x))
cost(x,y) } ≤ α . The complexity class APX is the class of all NP optimization

problems that have a polynomial-time α-approximation for some constant α ≥ 1.
Let P = (I, Sol, cost, goal) be an NP optimization problem. A Polynomial-Time Approximation

Scheme (PTAS) for P is an algorithmA that takes as input an instance x ∈ I and α > 1, and returns
a solution A(x ,α) ∈ Sol (x), such that for every α > 1 it is the case that the algorithm A(·,α) is a
polynomial-time α-approximation for P [43].

Let P = (I, Sol, cost, goal) and P ′ = (I′, Sol′, cost′, goal′) be NP optimization problems. A PTAS
reduction from P to P ′ is a triple (f ,д,κ) of algorithms that enable to transform a PTAS for P ′ into
a PTAS for P :

• f transforms, in polynomial time, every instance x ∈ I into an instance f (x) ∈ I′;
• κ maps every rational α > 1 into a rational c (α) > 1;
• д transforms, in polynomial time, every κ (α)-optimal solution y ′ for f (x), under P ′, into an

α-optimal solution д(x ,y ′) for x , under P .

A strict reduction from P to P ′ is a pair (f ,д) such that (f ,д,κ) is a PTAS reduction where κ is
the identity function; that is, д(x ,y ′) transforms an α-optimal solution for f (x) into an α-optimal
solution for x .

An NP optimization problem Q is APX-hard if there is a PTAS reduction from P to Q for every
problem P in APX. As usual, Q is APX-complete if Q is in APX and Q is APX-hard. Throughout
the article, we give several examples of known APX-complete problems, such as the vertex-cover
minimization problem: find a smallest set of nodes that hits all edges of a given graph. It is known
that an APX-hard problem does not have a PTAS, unless P = NP. Moreover, if Q is APX-hard,
then there is a constant α > 1 such that Q does not have any polynomial-time α-approximation,
assuming P � NP [30].

3 COMPUTING AN OPTIMAL S-REPAIR

In this section, we study the problem of computing an optimal S-repair. We begin with some no-
tation and assumptions.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:9

3.1 Setup

Throughout this section, we assume that every FD has a single attribute on its rhs, that is, it has
the form X → A. Clearly, this is not a limiting assumption, since replacing X → YZ with X → Y
and X → Z preserves equivalence.

Let Δ be a set of FDs. If X is a set of attributes, then we denote by Δ − X the set Δ′ of FDs that is
obtained from Δ by removing each attribute of X from every lhs and rhs of every FD in Δ. Hence,
no attribute in X occurs in Δ − X . If A is an attribute, then we may write Δ −A instead of Δ − {A}.

An lhs marriage of an FD set Δ is a pair (X1,X2) of distinct lhs of FDs in Δ such that:

• clΔ(X1) = clΔ(X2);
• The lhs of every FD in Δ contains either X1 or X2 (or both).

Example 3.1. A simple example of an FD set with an lhs marriage is the following FD set:

ΔA↔B→C
def
= {A→ B , B → A , B → C}. (1)

As another example, consider the following FD set:

Δ1
def
= {ssn→ first , ssn→ last , first last→ ssn , ssn→

address , ssn office→ phone , ssn office→ fax}.
Under Δ1, the pair ({ssn}, {first, last}) is an lhs marriage.

Finally, if S is a subset of a tableT , then we denote bywT (S) the sum of weights of the tuples of
S , that is,

wT (S)
def
=

∑
i ∈ids(S)

wT (i) .

3.2 Algorithm

We now describe an algorithm for finding an optimal S-repair. The algorithm terminates in poly-
nomial time, even under combined complexity, yet it may fail. If it succeeds, then the result is
guaranteed to be an optimal S-repair. We later discuss the situations in which the algorithm fails.
The algorithm, OptSRepair, is shown as Algorithm 1. The input is a set Δ of FDs and a tableT , both
over the same relation schema (that we do not need to refer to explicitly). In the remainder of this
section, we fix Δ andT , and describe the execution of OptSRepair on Δ andT . In the pseudocode,
we use conventional operators in relational algebra: projection (π), selection (σ) and union (∪).

The algorithm handles four cases. The first is where Δ is trivial. Then, T is itself an optimal S-
repair. The second case is where Δ has a common lhsA. Then, the algorithm groups the tuples byA,
finds an optimal S-repair for each group (via a recursive call to OptSRepair), this time by ignoring
A (i.e., removingA from the FDs of Δ), and returning the union of the optimal S-repairs. The precise
description is in Subroutine 1 (CommonLHSRep). The third case is where Δ has a consensus FD
∅ → A. Similarly to the second case, the algorithm groups the tuples by A and finds an optimal
S-repair for each group. This time, however, the algorithm returns an optimal S-repair with a
maximal weight among these repairs. The precise description is in Subroutine 2 (ConsensusRep).

The fourth (last) case is the most involved. This is the case where Δ has an lhs marriage (X1,X2).
In this case, the problem is reduced to finding a maximum weighted matching of a bipartite
graph [34]. The maximum weight matching problem is the problem of finding, given a weighted
bipartite graph (i.e., a bipartite graph in which every edge is associated with a weight), a matching
in which the sum of the weights is maximal. The graph, which we denote by G = (V1,V2,E,w),
consists of two disjoint node sets V1 and V2, an edge set E that connects nodes from V1 to nodes
fromV2, and a weight functionw that assigns a weightw (v1,v2) to each edge (v1,v2). For i = 1, 2,

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:10 E. Livshits et al.

the node setVi is the set of tuples in the projection ofT to Xi .
1 To determine the weightw (v1,v2),

we select fromT the subsetTv1,v2 that consists of the tuples that agree withv1 andv2 onX1 andX2,
respectively. We then find an optimal S-repair for Tv1,v2 , after we remove from Δ every attribute
in either X1 or X2. Then, the weight w (v1,v2) is the weight of this optimal S-repair. Next, we find
a maximum matching Emax of G. Note that Emax is a subset of E such that no node appears more
than once. The returned result is then the disjoint union of the optimal S-repairs of Tv1,v2 over all
(v1,v2) in Emax. The precise description is in Subroutine 3 (MarriageRep).

ALGORITHM 1: OptSRepair(Δ,T)

1: if Δ is trivial then � successful termination
2: return T
3: remove trivial FDs from Δ
4: if Δ has a common lhs then

5: return CommonLHSRep(Δ,T)

6: if Δ has a consensus FD then

7: return ConsensusRep(Δ,T)

8: if Δ has an lhs marriage then

9: return MarriageRep(Δ,T)

10: fail � cannot find an optimal S-repair

Subroutine 1: CommonLHSRep(Δ,T)

1: A := a common lhs of Δ
2: return ∪(a)∈πAT [∗]OptSRepair(Δ −A,σA=aT)

Subroutine 2: ConsensusRep(Δ,T)

1: select a consensus FD ∅ → A in Δ
2: for all (a) ∈ πAT [∗] do

3: Sa := OptSRepair(Δ −A,σA=aT)

4: amax := argmax
a
{wT (Sa) | (a) ∈ πAT [∗]}

5: return Samax

Subroutine 3: MarriageRep(Δ,T)

1: select an lhs marriage (X1,X2) of Δ
2: for all (a1, a2) ∈ πX1X2T [∗] do

3: Sa1,a2 := OptSRepair(Δ − X1X2,σX1=a1,X2=a2T)
4: w (a1, a2) := wT (Sa1,a2)

5: Vi := πXi
T [∗] for i = 1, 2

6: E := {(a1, a2) | (a1, a2) ∈ πX1X2T [∗]}
7: G := weighted bipartite graph (V1,V2,E,w)
8: Emax := a maximum matching of G
9: return ∪(a1,a2)∈Emax

Sa1,a2

1In principle, it may be the case that the same tuple occurs in both V1 and V2, since the tuple is in both projections.

Nevertheless, we still treat the two occurrences of the tuple as distinct nodes, and so effectively assume that V1 and V2 are

disjoint.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:11

The following example illustrates the execution of Subroutine 3. Example 3.5, given in the next
subsection, illustrates the evolution of FD sets during the execution of OptSRepair.

Example 3.2. Let Δ = {A→ B,B → A,B → C} be a set of FDs over R (A,B,C), and letT be a table
that contains four tuples: (1, 0, 0), (1, 1, 0), (0, 1, 1), (0, 1, 2). Suppose that the weight of (1, 1, 0) is
3, while the weight of the rest of the tuples is 1. The FD set Δ has an lhs marriage ({A}, {B}). There
are three pairs of values in πABT [∗], namely (1, 0), (1, 1), and (0, 1). In the subroutine MarriageRep,
we first find an optimal S-repair for the table corresponding to each such pair. Clearly, an optimal
S-repair of the table σA=1,B=0T (that contains the tuple (1, 0, 0)) is the table itself, and w (1, 0) = 1.
Similarly, the tableσA=1,B=1T (that contains the tuple (1, 1, 0)) is consistent andw (1, 1) = 3. Finally,
for the table σA=0,B=1T (that contains the tuples (0, 1, 1), (0, 1, 2)), we have that w (0, 1) = 1, since
these two tuples violate the FD B → C (hence only one of them will be in a repair).

The bipartite graphG will contain two nodesv0,v1 (corresponding to the values 0, 1 in attribute
A) on the left-hand-side, and two nodes u0,u1 (corresponding to the values 0, 1 in attribute B) on
the right-hand side. The edge set E will contain the edges (v1,u0) (withw (v1,u0) = 1), (v1,u1) (with
w (v1,u1) = 3), and (v0,u1) (with w (v0,u1) = 1). A maximum weight matching of G will contain
a single edge (v1,u1), and the corresponding table that contains the tuple (1, 1, 0) is indeed an
optimal S-repair of T . If, however, the weight of the tuple (1, 1, 0) is also 1, then the weight of
the edge (v1,u1) will be 1, and a maximum weight matching will contain two edges (v1,u0) and
(v0,u1). In this case, there are two optimal S-repairs: one that contains both (1, 0, 0) and (0, 1, 1),
and one that contains both (1, 0, 0) and (0, 1, 2). The algorithm will return one of these repairs.

The following theorem states the correctness and efficiency of OptSRepair.

Theorem 3.3. Let Δ and T be a set of FDs and a table, respectively, over a relation schema
R (A1, . . . ,Ak). If OptSRepair(Δ,T) succeeds, then it returns an optimal S-repair. Moreover,
OptSRepair(Δ,T) terminates in polynomial time in k , |Δ|, and |T |.

In the next subsection, we discuss the cases where OptSRepair(Δ,T) fails. The complete proof of
Theorem 3.3 is given in Section 4. The proof is by induction on the number of simplifications that
OptSRepair applies to Δ. For each one of the three simplifications, we prove that if OptSRepair

returns an optimal S-repair after the simplification is applied, then it also returns an optimal S-
repair for the original set of FDs.

3.3 Dichotomy

The reader can observe that the success or failure of the algorithm OptSRepair(Δ,T) depends only
on Δ, and not on T . The algorithm OSRSucceeds(Δ), depicted as Algorithm 2, tests whether Δ is
such that OptSRepair succeeds by simulating the cases and corresponding changes to Δ. The next
theorem shows that, under conventional complexity assumptions, OptSRepair covers all sets Δ
such that an optimal S-repair can be found in polynomial time. Hence, we establish a dichotomy
in the complexity of computing an optimal S-repair.

Theorem 3.4. Let Δ be a set of FDs.

• If OSRSucceeds(Δ) returns true, then an optimal S-repair can be computed in polynomial time
by executing OptSRepair(Δ,T) on the input T .

• If OSRSucceeds(Δ) returns false, then computing an optimal S-repair is APX-complete, and
remains APX-complete on unweighted, duplicate-free tables.

Moreover, the execution of OSRSucceeds(Δ) terminates in polynomial time in |Δ|.
The proof of Theorem 3.4 is involved, hence we give the full proof in Section 4. Note that

the positive side of the dichotomy is not guaranteed by traditional conditions on FDs, such as

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:12 E. Livshits et al.

ALGORITHM 2: OSRSucceeds(Δ)

1: while Δ is nontrivial do

2: remove trivial FDs from Δ
3: if Δ has a common lhs A then

4: Δ := Δ −A
5: else if Δ has a consensus FD ∅ → A then

6: Δ := Δ −A
7: else if Δ has an lhs marriage (X1,X2) then

8: Δ := Δ − X1X2

9: else

10: return false
11: return true

Boyce-Codd normal form (BCNF) [17]. For example, the FD set {A→ B,B → A} over R (A,B) is in
BCNF, but computing an optimal S-repair is APX-complete in this case.

Example 3.5. We now illustrate the application of Theorem 3.4 to several FD sets. Consider first
the FD set Δ of our running example. The execution of OSRSucceeds(Δ) transforms Δ as follows:

{facility→ city , facility room→ floor}
(common lhs) �{∅ → city , room→ floor}

(consensus) �{room→ floor}
(common lhs) �{∅ → floor}

(consensus) �{}.

Hence, OSRSucceeds(Δ) is true, and hence, an optimal S-repair can be found in polynomial time.
Next, consider the FD set ΔA↔B→C from Example 3.1. The algorithm OSRSucceeds(ΔA↔B→C)

executes as follows:

{A→ B,B → A,B → C}
(lhs marriage) �{∅ → C}

(consensus) �{}.

Hence, this is again an example of an FD set on the tractable side of the dichotomy.
As the last positive example, we consider the FD set Δ1 of Example 3.1:

{ssn→ first , ssn→ last , first last→ ssn , ssn→ address ,

ssn office→ phone , ssn office→ fax}
(lhs marriage) �{∅ → address , office→ phone , office→ fax}

(consensus) �{office→ phone , office→ fax}
(common lhs) �{∅ → phone , ∅ → fax}

(consensus) �{}.

However, for Δ = {A→ B,B → C}, none of the conditions of OSRSucceeds(Δ) is true, and there-
fore, the algorithm returns false. It thus follows from Theorem 3.4 that computing an optimal
S-repair is APX-complete (even if all tuple weights are the same and there are no duplicate tuples).
The same applies to Δ = {A→ B,C → D}.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:13

As another example, the following corollary of Theorem 3.4 generalizes the tractability of our
running example to general chain FD sets.

Corollary 3.6. If Δ is a chain FD set, then an optimal S-repair is computable in polynomial time.

Proof. The reader can easily verify that when Δ is a chain FD set, OSRSucceeds(Δ) will re-
duce it to emptiness by repeatedly removing consensus attributes and common-lhs, as done in our
running example. �

3.4 Most Probable Database

In this section, we draw a connection to the Most Probable Database problem (MPD) [28]. A table
in our setting can be viewed as a relation of a tuple-independent database [20] if each weight is in
the interval [0, 1]. In that case, we view the weight as the probability of the corresponding tuple,
and we call the table a probabilistic table. Such a table T represents a probability space over the
subsets ofT , where a subset is selected by considering each tupleT [i] independently and selecting
it with the probabilitywT (i), or equivalently, deleting it with the probability 1 −wT (i). Hence, the
probability of a subset S , denoted PrT (S), is given by

PrT (S)
def
=

��
�

∏
i ∈ids(S)

wT (i)��
�
× ��
�

∏
i ∈ids(T)\ids(S)

(1 −wT (i))��
�
. (2)

Given a constraint φ over the schema ofT , MPD for φ is the problem of computing a subset S that
satisfies φ, and has the maximal probability among all such subsets. Here, we consider the case
where φ is a set Δ of FDs. Hence, MPD for Δ is the problem of computing

argmax
S ⊆ T , S |= Δ

PrT (S).

Gribkoff, Van den Broeck, and Suciu [28] proved the following dichotomy for unary FDs, which
are FDs of the form A→ X having a single attribute on their lhs.

Theorem 3.7. [28] Let Δ be a set of unary FDs over a relational schema. MPD for Δ is either solvable
in polynomial time or NP-hard.

The question of whether such a dichotomy holds for general (not necessarily unary) FDs has
been left open. The following corollary of Theorem 3.4 fully resolves this question.

Theorem 3.8. Let Δ be a set of FDs over a relational schema. If OSRSucceeds(Δ) is true, then
MPD for Δ is solvable in polynomial time; otherwise, MPD is NP-hard, and has no polynomial-time
(multiplicative) approximation within any subexponential factor, unless P = NP.

Proof. We first show a reduction from MPD to the problem of computing an optimal S-repair.
Let T be an input for MPD. By a certain tuple, we refer to a tuple identifier i ∈ ids(T) such that
wT (i) = 1. We assume that the set of certain tuples satisfies Δ collectively, since otherwise the
probability of any consistent subset is zero (and we can select, e.g., the empty subset as a most
likely solution). We can then replace each probability 1 with a probability that is smaller than, yet
close enough to 1, so that every consistent subset that excludes a certain fact is less likely than any
subset that includes all certain facts. In addition, as observed by Gribkoff et al. [28], tuples with
probability at most 0.5 can be eliminated, since we can always remove them from any (consistent)
subset without reducing the probability. Hence, we assume that 0.5 < wT (i) < 1 for all i ∈ ids(T).

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:14 E. Livshits et al.

From (2), we conclude the following:

PrT (S) = ��
�

∏
i ∈ids(S)

wT (i)

1 −wT (i)
��
�
× ��
�

∏
i ∈ids(T)

(1 −wT (i))��
�
∝ ��

�

∏
i ∈ids(S)

wT (i)

1 −wT (i)
��
�
. (3)

Note that p ∝ q means that the two numbers differ by a multiplicative factor that is the same for
all possible worlds. The reason for the proportionality (∝) is that all consistent subsets share the
same right factor of the first product. While the weight of a consistent subset is the sum of its
tuple weights, the probability of a possible world is obtained by multiplying probabilities. Hence,
a probability is translated into a weight by taking its logarithm. Thus, we construct a tableT ′ that
is the same as T , except that wT ′ (i) = log(wT (i)/(1 −wT (i))) for all i ∈ ids(T ′). Since we assume
that wT (i) > 0.5 for all i ∈ ids(T), it holds that wT ′ (i) is strictly positive for all i ∈ ids(T ′). Then, a
most likely database of T is the same2 as an optimal S-repair of T ′.

For the “otherwise” part, we show a reduction from the problem of computing an optimal S-
repair of an unweighted table to MPD. The reduction is straightforward: givenT , we set the weight
wT (i) of each tuple to 0.9 (or any fixed number greater than 0.5). From Equation (2) it follows that a
consistent subset is most probable if and only if it has a maximal number of tuples. From Equation
(3), we conclude that the probability of a subset S is proportional to (0.9/0.1) |S | = 9 |S | . Therefore,
the gap between the probability of an S-repair S and that of an optimal S-repair O is 9 |O |− |S | .
The APX-hardness of finding an optimal subset repair implies that, assuming P � NP, there is a
fixed α > 1, such that we cannot guarantee any S with |T | − |S | < α (|T | − |O |), or equivalently, we
cannot guarantee |O | − |S | < (α − 1) (|T | − |O |). Note, however, that (α − 1) (|T | − |O |) is Ω(|T |).
Therefore, we cannot get an approximation better than the exponential 9Ω(|T |) . �

Comment 3.9. When considering unary FDs, there is a disagreement between our tractability con-
dition (Algorithm 2) and that of Gribkoff et al. [28]. In particular, the FD set ΔA↔B→C defined in Equa-
tion (1) is classified as polynomial time in our dichotomy while NP-hard by Gribkoff et al. [28]. This
is due to a gap in their proof of hardness.3

3.5 Approximation

An easy observation is that the computation of an optimal subset is easily reducible to the weighted
vertex-cover problem—given a graphG where nodes are assigned nonnegative weights, find a ver-
tex cover (i.e., a set C of nodes that intersects with all edges) with a minimal sum of weights.
Indeed, given a table T , we construct the graph G that has ids(T) as the set of nodes, and an edge
between every i and j such that T [i] and T [j] contradict one or more FDs in Δ. Given a vertex
cover C for G, we obtain a consistent subset S by deleting from T every tuple with an identifier
in C . Clearly, this reduction is strict. As weighted vertex cover is 2-approximable in polynomial
time [8], we conclude the same for optimal subset repairing.

Proposition 3.10. For all FD sets Δ, a 2-optimal S-repair can be computed in polynomial time.

While Proposition 3.10 is straightforward, it is of practical importance as it limits the severity of
the lower bounds we established in this section. Moreover, we will later show that the proposition
has implications on the problem of approximating an optimal U-repair.

2We do not need to make an assumption of infinite precision to work with logarithms, since the algorithms we use for

computing an optimal S-repair can replace addition and subtraction with multiplication and division, respectively.
3This has been established in a private communication with the authors of Reference [28].

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:15

Fig. 2. An illustration of the proof of Theorem 3.3. We start with an FD set Δ0 and apply simplifications to

it, until we get a trivial set of FDs Δ. The red arrows represent simplifications. A black arrow from Δ′ to Δ
means that if we can find an optimal S-repair for Δ′ in polynomial time, then we can find an optimal S-repair

for Δ in polynomial time. The proof is in the lemma that appears next to the corresponding black arrow.

4 PROOF OF DICHOTOMY

In this section, we prove Theorem 3.4. As in the previous section, we assume that every FD has a
single attribute on its rhs.

4.1 Positive Side

The positive side is a direct consequence of Theorem 3.3. Recall that Theorem 3.3 states that if
OptSRepair(Δ,T) succeeds on a set of FDs Δ and a tableT , then it return an optimal S-repair ofT
w.r.t. Δ in polynomial time. Since OSRSucceeds(Δ) simulates the execution of OptSRepair(Δ,T)
and returns true if and only if OptSRepair(Δ,T) succeeds on every table T , the positive side of
Theorem 3.4 follows immediately from Theorem 3.3. Hence, we start by proving this theorem.

The proof of Theorem 3.3 is illustrated in Figure 2. We prove the theorem by induction on the
number of simplifications that OptSRepair applies to Δ. For each one of the three simplifications,
we prove that if OptSRepair returns an optimal S-repair after the simplification is applied, then
it also returns an optimal S-repair for the original set of FDs. We start by proving this for the
common lhs simplification.

Lemma 4.1. Let T be a table and Δ be a set of FDs that has a common lhs A. If
OptSRepair(Δ −A,σA=aT) returns an optimal S-repair of σA=aT w.r.t. Δ −A for all (a) ∈ πAT [∗],
then CommonLHSRep(Δ,T) returns an optimal S-repair of T w.r.t. Δ.

Proof. Let J be the result of CommonLHSRep(Δ,T). We start by proving that J is consistent.
Let us assume, by way of contradiction, that J is not consistent. Thus, there are two tuples t1

and t2 in J that jointly violate an FD Z → B in Δ. Since A is a common lhs, it holds that A ∈ Z ;
hence, the tuples t1 and t2 agree on the value of attribute A, and do not agree on the value of
attribute B. Assume that t1.A = t2.A = a. By definition, there is an FD (Z \ {A)} → B in Δ −A.
Clearly, the tuples t1 and t2 agree on all the attributes in Z \ {A}, and do not agree on the value
of attribute B. Thus, t1 and t2 violate an FD in Δ −A, which is a contradiction to the fact that
OptSRepair(Δ −A,σA=aT) returns an optimal S-repair of σA=aT that contains both t1 and t2.

Next, we prove that J is an optimal S-repair of T . Let us assume, by way of contradiction, that
this is not the case. That is, there is another consistent subset J ′ of T , such that wT (J ′) > wT (J).
In this case, there exists at least one value a′ of attribute A, such that the total weight of the
tuples t ∈ J ′ for which it holds that t.A = a′ is higher than the total weight of such tuples in J . Let

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:16 E. Livshits et al.

F = {f1, . . . , fn } be the set of tuples from J for which it holds that fj .A = a′, and letG = {g1, . . . , gm }
be the set of such tuples in J ′. It holds that wT (G) > wT (F).

We claim that {g1, . . . , gm } is a consistent subset of σA=a′T . Let us assume, by way of contradic-
tion, that {g1, . . . , gm } is not a consistent subset of σA=a′T . Thus, there exist two tuples gj1 and gj2

that jointly violate an FD, Z → B, in Δ −A. By definition, there is an FD (Z ∪ {A}) → B in Δ, and
since gj1 and gj2 agree on the value of attribute A, they clearly violate this FD as well, which is a
contradiction to the fact that they both appear in J ′ (which is a consistent subset ofT). Hence,G is
a consistent subset of σA=a′T and it holds thatwT (G) > wT (F), which is a contradiction to the fact
that {f1, . . . , fn } is an optimal S-repair of σA=a′T . We conclude that J is a consistent subset of T ,
and there is no other consistent subset ofT with a weight higher thatwT (J); hence J is an optimal
S-repair of T w.r.t. Δ. �

Next, we consider the consensus FD simplification.

Lemma 4.2. Let T be a table and Δ be a set of FDs that has a consensus FD ∅ → A. If
OptSRepair(Δ −A,σA=aT) returns an optimal S-repair of σA=aT w.r.t. Δ −A for all (a) ∈ πAT [∗],
then ConsensusRep(Δ,T) returns an optimal S-repair of T w.r.t. Δ.

Proof. Let J be the result of ConsensusRep(Δ,T). We will start by proving that J is consistent.
Let us assume, by way of contradiction, that J is inconsistent. Thus, there are two tuples t1 and t2

in J that jointly violate an FD Z → B in Δ. Note that t1 and t2 agree on the value of attribute A
(since ConsensusRep(Δ,T) always returns a set of tuples that agree on the value of attribute A).
Assume that t1.A = t2.A = a. Therefore, it holds that B � A and t1.B � t2.B. By definition, there is
an FD (Z \ {A}) → B in Δ −A. Clearly, the tuples t1 and t2 agree on all the attributes in Z \ {A},
but do not agree on the value of attribute B. Thus, t1 and t2 also jointly violate an FD in Δ −A,
which is a contradiction to the fact that OptSRepair(Δ −A,σA=aT) returns an optimal S-repair of
σA=aT that contains both t1 and t2.

Next, we prove that J is an optimal S-repair of T . Clearly, an optimal S-repair of T is also an
optimal S-repair of σA=a′T for some (a′) ∈ πAT [∗] (as Δ contains the FD ∅ → A). We know that
OptSRepair(Δ −A,σA=aT) returns an optimal S-repair of σA=aT w.r.t. Δ −A for all (a) ∈ πAT [∗],
and ConsensusRep(Δ,T) chooses the S-repair with the highest weight among these S-repairs;
hence, J is an optimal S-repair of T w.r.t. Δ. �

We now prove the above for the lhs-marriage simplification.

Lemma 4.3. Let T be a table and Δ be a set of FDs that has an lhs marriage (X1,X2). If
OptSRepair(Δ − X1X2,σX1=a1,X2=a2T) returns an optimal S-repair of σX1=a1,X2=a2T w.r.t. Δ − X1X2

for all (a1, a2) ∈ πX1X2T [∗], then MarriageRep(Δ,T) returns an optimal S-repair of T w.r.t. Δ.

Proof. Let J be the result of MarriageRep(Δ,T). We first prove that J is consistent. Assume,
by way of contradiction, that t1 and t2 are two tuples in J that jointly violate Δ. We first observe
that t1[X1] = t2[X1] if and only if t1[X2] = t2[X2], since J is constructed via a matching ofG (lines
8-9). If t1[X1] � t2[X1] and t1[X2] � t2[X2], then the definition of an lhs marriage implies that t1

and t2 disagree on the left-hand side of every FD in Δ, and hence satisfy Δ. We conclude that
t1[X1] = t2[X1] and t1[X2] = t2[X2], and therefore, t1 and t2 are both in σX1=a1,X2=a2T for some
(a1, a2) ∈ πX1X2T [∗]. Suppose that t1 and t2 violate the FD Z → B in Δ. Since t1 and t2 agree on X1

andX2, the tuples t1 and t2 must violate Z \ (X1 ∪ X2) → B, which is in Δ − X1X2. This contradicts
the assumption that OptSRepair(Δ − X1X2,σX1=a1,X2=a2T) returns an S-repair. We conclude that J
is consistent, as claimed.

We complete the proof by showing that J is optimal. Let J ′ be a consistent subset ofT . We need
to prove that wT (J ′) ≤ wT (J). From the construction of J it follows that wT (J) = w (Emax), where

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:17

w (E) denotes the sum of weights of a matching E ofG. So, it suffices to prove thatwT (J ′) ≤ w (E ′)
for some matching E ′ of G.

The definition of an lhs marriage implies that both X1 → X2 and X2 → X1 are entailed by Δ.
Hence, if t1 and t2 are tuples of J ′, then it is again the case that t1[X1] = t2[X1] if and only
if t1[X2] = t2[X2]. We select as E ′ the matching of G that contains the edges (a1, a2) whenever
t[X1] = a1 and t[X2] = a2 for some tuple t of J ′. As J ′ is consistent, we have that σX1=a1,X2=a2 J

′

is a consistent subset of σX1=a1,X2=a2T w.r.t. Δ − X1X2 for all (a1, a2) ∈ E ′, since all the tuples
in this instance agree on X1X2. Then, if Sa1,a2 is an optimal S-repair of σX1=a1,X2=a2T , then
wT (σX1=a1,X2=a2 J

′) ≤ wT (Sa1,a2). Moreover, wT (Sa1,a2) = w (a1, a2) due to the construction of G
and the assumption that OptSRepair(Δ − X1X2,σX1=a1,X2=a2T) returns an optimal S-repair. Thus,
wT (J ′) ≤ w (E ′) as claimed. �

Finally, we use the above lemmas to prove Theorem 3.3. We will prove the theorem by induction
on n, the number of simplifications that will be applied to Δ by OptSRepair. We start by proving
the basis of the induction, that is, n = 0. In this case, OptSRepair(Δ,T) will only succeed if Δ = ∅
or if Δ is trivial. Clearly, in this case,T is consistent w.r.t. Δ and an optimal S-repair ofT isT itself.
And indeed, OptSRepair(Δ,T) will return T .

For the inductive step, we need to prove that if the claim is true for all n = 1, . . . ,k − 1, it is
also true for n = k . In this case, OptSRepair(Δ,T) will start by applying some simplification to
the schema. Clearly, the result is a set of FDs Δ′, such that OptSRepair(Δ′,T ′) will apply k − 1
simplifications to Δ′. One of the following holds:

(1) Δ has a common lhs A. In this case, the condition of line 4 is satisfied and the subrou-
tine CommonLHSRep will be called. Note that OptSRepair(Δ,T) will succeed if and only
if OptSRepair(Δ −A,σA=aT) succeeds for each (a) ∈ πAT [∗]. We know from the induc-
tive assumption that if OptSRepair(Δ −A,σA=aT) succeeds, then it returns] an optimal
S-repair. Thus, Lemma 4.1 implies that OptSRepair(Δ,T) returns an optimal S-repair ofT
w.r.t. Δ.

(2) Δ does not have a common lhs, but has a consensus FD ∅ → A. In this case, the con-
dition of line 4 is not satisfied, but the condition of line 6 is satisfied and the subrou-
tine ConsensusRep will be called. Again, OptSRepair(Δ,T) will succeed if and only if
OptSRepair(Δ −A,σA=aT) succeeds for each (a) ∈ πAT [∗]. We know from the inductive
assumption that if OptSRepair(Δ −A,σA=aT) succeeds, then it returns an optimal S-repair.
Thus, Lemma 4.2 implies that OptSRepair(Δ,T) returns an optimal S-repair of T w.r.t. Δ.

(3) Δ does not have a common lhs or a consensus FD, but has an lhs marriage. In this
case, the conditions of line 4 and line 6 are not satisfied, but the condition of line 8
is satisfied and the subroutine MarriageRep will be called. As in the previous cases,
OptSRepair(Δ,T) will succeed if and only if OptSRepair(Δ − X1X2,σX1=a1,X2=a2T) suc-
ceeds for each (a1, a2) ∈ πX1X2T [∗]. We know from the inductive assumption that if
OptSRepair(Δ − X1X2,σX1=a1,X2=a2T) succeeds, then it returns an optimal S-repair. Thus,
Lemma 4.3 implies that OptSRepair(Δ,T) returns an optimal S-repair of T w.r.t. Δ.

This concludes our proof of correctness of algorithm OptSRepair.

4.1.1 Complexity. Next, we prove the complexity claim of Theorem 3.3. The main observation
here is that whenever the algorithm makes a recursive call, it is applied to disjoint sets of tuples
of T . For the common lhs and consensus FD simplifications, the recursive call is applied to σA=aT
for every (a) ∈ πAT [∗], and for the lhs marriage simplification, the recursive call is applied to
σX1=a1,X2=a2T for every (a1, a2) ∈ πX1X2T [∗].

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:18 E. Livshits et al.

We now provide the recurrence function for each one of the subroutines of the algorithm. The
following is the recurrence function for the subroutines CommonLHSRep and ConsensusRep:

F (k,n) ≤ P (k,n) +
∑

(a)∈πAT [∗]
F (k − 1,na),

wherek is the number of attributes that occur in Δ,n is the number of tuples inT , P is a polynomial,
and na is the number of tuples in σA=aT . These subroutines have the same recurrence function (up
to the polynomial P), since in both cases we split the database into block of tuples that agree on
the value of attribute A, and then solve the problem separately for each one of these blocks.

The recurrence function for the subroutine MarriageRep looks as follows:

F (k,n) ≤ P (k,n) +
∑

(a1, a2) ∈
πX1X2T [∗]

F (k − 1,na1,a2),

where na1,a2 is the number of tuples in σX1=a1,X2=a2T .
Since finding an optimal S-repair for a trivial FD set requires no computation (except for return-

ing the table itself), and since in each one of the above recurrence functions the tables in the last
argument form a partition ofT , a standard analysis of F shows that it is bounded by a polynomial.

4.2 Negative Side

For the negative side of Theorem 3.4, membership in APX is due to Proposition 3.10. The proof
of hardness is based on the concept of a fact-wise reduction [31], as previously done for proving
dichotomies on sets of FDs [23, 31, 32, 36]. In our setup, a fact-wise reduction is defined as follows.
Let R and R′ be two relation schemas. A tuple mapping from R to R′ is a function μ that maps
tuples over R to tuples over R′. We extend μ to map tables T over R to tables μ (T) over R′ in the
following way. The table μ (T) will have the same tuple identifiers as T (i.e., ids(μ (T)) = ids(T)).
Moreover, μ (T)[i] = μ (T [i]) and wμ (T) (i) = wT (i) for all i ∈ ids(μ (T)). Let Δ and Δ′ be sets of FDs
over R and R′, respectively. A fact-wise reduction from (R,Δ) to (R′,Δ′) is a tuple mapping Π from
R to R′ with the following properties:

(1) Π is injective; that is, for all tuples t1 and t2 over R, if Π(t1) = Π(t2) then t1 = t2;
(2) Π preserves consistency and inconsistency; that is, for all tablesT , the table Π(T) satisfies

Δ′ if and only if T satisfies Δ;
(3) Π is computable in polynomial time.

The following lemma is straightforward.

Lemma 4.4. Let R and R′ be relation schemas and Δ and Δ′ FD sets over R and R′, respectively. If
there is a fact-wise reduction from (R,Δ) to (R′,Δ′), then there is a strict reduction from the problem
of computing an optimal S-repair under R and Δ to that of computing an optimal S-repair under R′

and Δ′.

Our proof, which is illustrated in Figure 3, consists of four steps.

(1) We first prove APX-hardness for each of the FD sets in Table 1 overR (A,B,C). For ΔA→B→C

and ΔA→C←B , we adapt reductions by Gribkoff et al. [28] in the work that we discussed in
Section 3.4. For ΔAB→C→B , we show a reduction from MAX-NM-SAT [29]. Most intricate
is the proof for ΔAB↔AC↔BC , where we devise a nontrivial adaptation of a reduction by
Amini et al. [3] from finding a maximum bounded covering by 3-sets to triangle packing
in graphs of bounded degree.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:19

Fig. 3. An illustration of our proof of the negative side of Theorem 3.4. We start with an FD set Δ0 and apply

simplifications to it, until we get a nontrivial set of FDs Δ, that we classify into one of five classes. The red

arrows represent simplifications. A black arrow represents a reduction that we construct in the lemma that

appears next to the arrow.

Table 1. FD Sets Over R (A,B,C) Used in the

Proof of Hardness of Theorem 3.4

Name FDs

ΔA→B→C A→ B, B → C
ΔA→C←B A→ C , B → C
ΔAB→C→B AB → C , C → B
ΔAB↔AC↔BC AB → C , AC → B, BC → A

(2) Next, we consider an FD set Δ that cannot be further simplified (that is, Δ does not have
a common lhs, a consensus FD, or an lhs marriage). We show that Δ can be classified into
one of five certain classes of FD sets.

(3) Then, we prove that for each FD set Δ in one of the five classes there exists a fact-wise
reduction from one of the four schemas of Table 1.

(4) Finally, we prove that whenever OSRSucceeds simplifies Δ into Δ′, there is a fact-wise
reduction from (R,Δ′) to (R,Δ), where R is the underlying relation schema.

Next, we give the full proof. Recall that in the negative side of Theorem 3.4, we consider un-
weighted, duplicate-free tables; hence, in all of our reductions, we will construct such tables. Also
recall that to construct an α-optimal repair, it suffices to construct a consistent subset S of T such
that distsub (S,T) ≤ α · distsub (Sopt,T), where Sopt is an optimal S-repair of T . We can then trans-
form the consistent subset into a repair, without increasing the distance, by greedily adding tuples

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:20 E. Livshits et al.

while we can. Hence, in our proofs, we will often construct consistent subsets without reasoning
about maximality.

4.2.1 Step 1: Hardness for the FD Sets in Table 1. We start by proving that computing an optimal
S-repair for the FD sets in Table 1 is APX-complete. Proposition 3.10 implies that the problem is
in APX for each one of these sets. Thus, it is only left to show that the problem is also APX-hard.
Gribkoff et al. [28] proved that the MPD problem is NP-hard for both ΔA→B→C and ΔA→C←B . Their
hardness proof also holds for the problem of computing an optimal S-repair. Thus, we have the
following lemma.

Lemma 4.5. [28] Computing an optimal S-repair is NP-hard for both ΔA→C←B and ΔA→B→C .

We will now strengthen the above result by showing that the problems are not only NP-hard
but also APX-hard. Gribkoff et al. [28] prove Lemma 4.5 by showing a reduction from the MAX-
2-SAT problem: given a 2-CNF formula ψ , determine what is the maximum number of clauses in
ψ , which can be simultaneously satisfied. We now show that their reduction is a PTAS-reduction
from MAX-2-SAT to our problem, and since MAX-2-SAT is known to be APX-complete [7], we
will conclude that our problem is APX-complete as well. We give the results separately for the
convenience of later reference.

Lemma 4.6. Computing an optimal S-repair for ΔA→C←B is APX-complete.

Proof. The reduction of Gribkoff et al. [28] uses the following construction. Given a 2-CNF
formulaψ , they construct a tableT over R (A,B,C), by adding the tuples (ci ,xk , lxk

) and (ci ,x j , lx j
)

for each clause ci = lx j
∨ lxk

in ψ , where lx is either x or ¬x for x ∈ {x j ,xk }. The FD A→ C in
ΔA→C←B ensures that each consistent subset contains at most one tuple for each clause. The FD
B → C in ΔA→C←B ensures that for every variable x , each consistent subset contains either x or
¬x (but not both) in attributeC . Hence, as proved by Gribkoff et al. [28], it holds that the maximum
number of clauses that can be simultaneously satisfied is exactly the size of an optimal S-repair of
the constructed table T (which is unweighted and duplicate-free). We denote by n the number of
clauses in ψ . Clearly, the constructed T contains 2n tuples. Hence, an optimal solution for MAX-
2-SAT satisfies m clauses if and only if an optimal S-repair is obtained by deleting 2n −m tuples
from T .

We now prove that their reduction is a PTAS-reduction (f ,д,κ). The function f is described
above. Clearly, it transforms an input x to MAX-2-SAT to an input f (x) to our problem in poly-
nomial time. Given a solution y ′ to f (x), the solution д(x ,y ′) for x will assign the value 1 to a
variable x j in the formula if a tuple (ci ,x j ,x j) is in T \ y ′ (i.e., it belongs to the S-repair obtained
by deleting the tuples in y ′ from T). Similarly, it will assign the value 0 to a variable xk if a tuple
(ci ,xk ,¬xk) is in T \ y ′. As explained above, a consistent subset of T cannot contain two tuples
(ci ,x j ,x j) and (cr ,x j ,¬x j); hence, this is indeed a truth assignment to the variables in the formula.
Moreover, the assignment д(x ,y ′) satisfies each ci that appears in attribute A in some tuple from
T \ y ′, and since each tuple in T \ y ′ has a different ci in attribute A (otherwise, the FD A→ C
is violated), exactly 2n − |y ′ | clauses are satisfied by д(x ,y ′). Note that since T \ y ′ is an S-repair,
we cannot add tuples to it without violating consistency; hence, clauses ci that do not appear in
T \ y ′ are not satisfied by this assignment. We will prove that ify ′ is a κ (α)-optimal solution to our
problem on f (x), then д(x ,y ′) is an α-optimal solution to MAX-2-SAT on x , where κ (α) = 4α−1

3α
.

Let yopt be a set of clauses satisfied by an optimal solution to the MAX-2-SAT problem, and let
y ′opt be an optimal solution to our problem. It is known that there is always an assignment that

satisfies at least half of the clauses in the formula; hence, it holds that 1
2n ≤ |yopt |. Now, for β > 1,

let y ′ be a β-optimal solution to our problem. Then, we have that |y ′| ≤ β |y ′opt |. We will now show

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:21

Fig. 4. An illustration of the reduction used by Amini et al. [3] to prove APX-hardness for the problem of

finding the maximum number of edge disjoint triangles in a tripartite graph with a bounded degree.

that if β = 4α−1
3α

, then д(x ,y ′) is an α-optimal solution for MAX-2-SAT. Let y be the set of clauses
satisfied by the assignment д(x ,y ′):

|y | = 2n − |y ′ | ≥ 2n − β |y ′opt | = 2n − β (2n − |yopt |) = β |yopt | − 2(β − 1)n

≥ β |yopt | − 2(β − 1) · 2|yopt | = (4 − 3β) |yopt |.
Hence, the following holds:

|y |
|yopt |

≥ (4 − 3β) =
1

α

⇒ β =
4α − 1

3α
.

Therefore, to obtain an α-optimal solution to MAX-2-SAT, we need to find a 4α−1
3α

-optimal solu-
tion to our problem. Clearly, κ (α) > 1 whenever α > 1, and that concludes our proof. �

Lemma 4.7. Computing an optimal S-repair for ΔA→B→C is APX-complete.

Proof. Gribkoff et al. [28] use the same reduction for both ΔA→C←B and ΔA→B→C . The only
difference is that for ΔA→B→C the FD A→ B (rather than A→ C) ensures that each consistent
subset contains at most one tuple for each clause. Hence, the proof of the previous lemma also
holds for this case. �

Next, we prove that computing an optimal S-repair for ΔAB↔AC↔BC is APX-complete as well.
To do that, we consider the problem of finding the maximum number of edge-disjoint triangles in
a tripartite graph with a bounded degree B. Amini et al. [3] (who refer to this problem as MECT-B)
proved that this problem is APX-complete. We first prove that the complement problem of MECT-
B (i.e., what is the minimum number of triangles that need to be left out in any choice of a set
of edge-disjoint triangles from the graph) is APX-hard for tripartite graphs that satisfy a specific

property. We denote the complement problem by MECT-B. We use the reduction of Amini et al. [3]
to prove that.

To prove APX-hardness for the problem MECT-B, they build a reduction from the problem of
finding a maximum bounded covering by 3-sets: given a collection of subsets of a given set that
contain exactly three elements each, such that each element appears in at most B subsets, find the
maximum number of disjoint subsets. In their reduction, they construct a tripartite graph, such
that for each subset Si = {x ,y, z}, they add to the graph the structure from Figure 4. Note that the
nodes ai [1] . . . ai [9] are unique for this subset, while the nodes x[0],x[1],y[0],y[1], z[0], z[1] will
appear only once in the graph, even if they appear in more than one subset. Thus, we can build a
set of edge-disjoint triangles for the constructed tripartite graph by selecting, for each subset, six
out of the thirteen triangles (the even ones). This is true, since the even triangles do not share an
edge with any other triangle. Hence, in their reduction, they construct a tripartite graph with the
following property: the maximum number of edge-disjoint triangles in the graph is at least 6

13 of

the total number of triangles. We denote a graph that satisfies this property by 6
13 -tripartite graph.

Thus, the reduction of Amini et al. [3] implies that the following holds.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:22 E. Livshits et al.

Lemma 4.8. The problem MECT-B for 6
13 -tripartite graphs is APX-hard.

We will now prove that the complement problem is APX-hard as well.

Lemma 4.9. The problem MECT-B on 6
13 -tripartite graphs is APX-hard.

Proof. We construct a PTAS reduction (f ,д,κ) from MECT-B on 6
13 -tripartite graphs to

MECT-B on 6
13 -tripartite graphs. The function f is the identity function; that is, f (x) = x . Given a

solution y ′ to MECT-B, the solution д(x ,y ′) will contain every triangle that belongs to x , but does

not belong to y ′. We will now prove that if y ′ is an 13α−6
7α

-optimal solution for MECT-B on f (x),
then д(x ,y ′) is an α-optimal solution for MECT-B on x .

Letyopt be an optimal solution to MECT-B on x , and lety ′opt be an optimal solution to MECT-B on

f (x). Letn be the number of triangles in x . Since the input to both problems is a 6
13 -tripartite graph,

it holds that |yopt | ≥ 6
13 · n. Now, for β > 1, lety ′ be a β-optimal solution to MECT-B on f (x). Then,

we have that |y ′| ≤ β |y ′opt |. We will show that if β = 13α−6
7α

, then д(x ,y ′) is an α-optimal solution

for MECT-B on x . We denote by y the set д(x ,y ′) of edge-disjoint triangles. Note that if |y ′| =m,
then |y | = n −m. Moreover, if |y ′opt | =m, then |yopt | = n −m:

|y | = n − |y ′| ≥ n − β |y ′opt | = n − β (n − |yopt |) = β |yopt | − (β − 1)n

≥ β |yopt | − (β − 1) · 13

6
|yopt | =

(
13

6
− 7

6
β
)
|yopt |.

Hence, the following holds:
|y |
|yopt |

≥
(

13

6
− 7

6
β
)
=

1

α

⇒ β =
13α − 6

7α
.

Thus, to obtain an α-optimal solution to MECT-B, we need to find a 13α−6
7α

-optimal solution to

MECT-B, and that concludes our proof. �

Next, we introduce our reduction from MECT-B on 6
13 -tripartite graphs to the problem of com-

puting an optimal S-repair for ΔAB↔AC↔BC .

Lemma 4.10. Computing an optimal S-repair for ΔAB↔AC↔BC is APX-complete.

Proof. We construct a strict reduction (f ,д) from MECT-B on 6
13 -tripartite graphs. In our con-

struction, tuples (a,b, c) will represent triangles (consisting of the nodesa,b and c), and the FDs will

assert the edge disjointness. More formally, the input x to the MECT-B problem is a 6
13 -tripartite

graph with a bounded degree B. We assume that x contains three sets of nodes: {a1, . . . ,an },
{b1, . . . ,bl } and {c1, . . . , cr }. Given such an input, the function f will construct an input T for
our problem as follows. For each triangle in x that consists of the nodes ai , bj , and ck , the table T
will contain a tuple (ai ,bj , ck). Given a solution y ′ to our problem on f (x), the solution д(x ,y ′)
will contain every triangle (ai ,bj , ck) corresponding to a tuple in y ′. We will now prove that at
most m triangles need to be left out in any choice of a set of edge-disjoint triangles from x if and
only if there is a consistent subset of T that is obtained by deleting at mostm tuples.

The “if” direction. Assume that there is a consistent subset J of T that is obtained by delet-
ing at most m tuples. The FD AB → C implies that a consistent subset cannot contain two tuples
(ai ,bj , ck1

) and (ai ,bj , ck2
) such that ck1

� ck2
. Moreover, the FD AC → B implies that it cannot

contain two tuples (ai ,bj1 , ck) and (ai ,bj2 , ck) such that bj1 � bj2 , and the FD BC → A implies that
it cannot contain two tuples (ai1 ,bj , ck) and (ai2 ,bj , ck) such that ai1 � ai2 . Thus, two triangles

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:23

(ai1 ,bj1 , ck1
) and (ai2 ,bj2 , ck2

) in x that correspond to two tuples (ai1 ,bj1 , ck1
) and (ai1 ,bj1 , ck1

) in J ,
will not share an edge (they can only share a single node). Hence, there is a set of edge-disjoint
triangles from x that does not contain at mostm triangles from x (one for each tuple in T \ J).

The “only if” direction. Assume that there is a set S of edge-disjoint triangles from д, such that at
mostm triangles from д do not belong to S . We can build a consistent subset J ofT in the following
way: for each triangle (ai ,bj , ck) in S , we will add the tuple (ai ,bj , ck) to J . Thus, J will contain |S |
tuples; that is, there will be at mostm tuples inT \ J . It is only left to show that J is consistent. Let
us assume, by way of contradiction, that J is not consistent. That is, there are two tuples (a1,b1, c1)
and (a2,b2, c2) in J that violate an FD in ΔAB↔AC↔BC . If the tuples violate the FD AB → C , then
it holds that a1 = a2 and b1 = b2. Thus, the corresponding two triangles from S share the edge
(a1,b1), which is a contradiction to the fact that S is a set of edge-disjoint triangles. Similarly, if
the tuples violate the FDAC → B, then the corresponding two triangles share an edge (a1, c1), and
if they violate the FD BC → A, the corresponding two triangles share an edge (b1, c1). Therefore,
there exists a consistent subset of T that is obtained by deleteing at mostm tuples.

The above implies that if y ′ is an α-optimal solution to our problem on f (x), then д(x ,y ′) is an

α-optimal solution to MECT-B on x . Hence, our reduction is a strict reduction from MECT-B, and
Lemma 4.9 implies that our problem is indeed APX-complete. �

Finally, we construct a reduction from MAX-NM-SAT to the problem of computing an optimal S-
repair for ΔAB→C→B . MAX-NM-SAT is the problem of determining what is the maximum number
of clauses that can be simultaneously satisfied in a CNF-formula where each clause contains either
only positive literals or only negative literals. We start by proving that MAX-NM-SAT is APX-hard.

Lemma 4.11. The problem MAX-NM-SAT is APX-hard.

Proof. Guruswami [29] constructed a reduction from the MAX-3-SAT problem (which is the
same as MAX-2-SAT, except that the input is a 3CNF formula) to the MAX-NM-SAT problem.
Given an input x to the first problem (i.e., a 3CNF formula), he constructs an input f (x) to the

second problem by replacing every caluse ci in x with two clauses: c
p
i = (

∨
l ∈Pci

l ∨ zci
) and cn

i =

(
∨

l ∈Nci
l ∨ ¬zci

), where Pci
is the set of positive literals in ci , Nci

is the set of negative literals

in ci , and zci
is a new variable. We now prove that this reduction is a PTAS-reduction, and since

MAX-3-SAT is APX-complete [43], this will conclude our proof.
Clearly, the function f described above transforms an input x to MAX-3-SAT to an input f (x) to

MAX-NM-SAT in polynomial time. The function д will transform a solution y ′ to MAX-NM-SAT
on f (x) to a solution y to MAX-3-SAT on x by projecting the assignment y ′ to the variables in x .
That is, for every variable z that appears in x , we will have that y (z) = 1 if y ′(z) = 1, and y (z) = 0
if y ′(z) = 0. We now prove that if y ′ is a κ (α)-optimal solution to MAX-NM-SAT on f (x), then
д(x ,y ′) is an α-optimal solution to MAX-3-SAT on x , where κ (α) = 3α

2α+1 .
Let n be the number of clauses in x . Then, the number of clauses in f (x) is 2n. We start by

showing that at least k clauses can be simultaneously satisfied in x if and only if at least n + k
clauses can be simultaneously satisfied in f (x). Each clause ci in x corresponds to two clauses c

p
i

and cn
i in f (x). If ci is satisfied by a positive literal, then c

p
i is satisfied by the same assignment,

and we can satisfy cn
i by assigning the value 0 to the variable zci

. A similar argument holds for the
case where ci is satisfied by a negative literal, in which case, we will assign the value 1 to zci

. If

ci is not satisfied, then by assigning the value 1 to zc1 , we can satisfy the clause c
p
i , but the clause

cn
i will not be satisfied. Hence, an assignment that satisfies k clauses in x can be extended to an

assignment that satisfies n + k clauses in f (x). For the other direction, if there is an assignment

that satisfies at least n + k clauses in f (x), then for at least k values i it holds that both c
p
i and cn

i

are satisfied. For each such i , at least one of these two clauses is satisfied by a literal from ci ; hence,

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:24 E. Livshits et al.

the projection of this assignment to the variables of x satisfies at least k clauses in x . We conclude
that an optimal solution to MAX-3-SAT satisfies k clauses if and only if an optimal solution to
MAX-NM-SAT satisfies n + k clauses.

Let yopt be a set of clauses satisfied by an optimal solution to the MAX-3-SAT problem, and
let y ′opt be an optimal solution to the MAX-NM-SAT problem. It is known that there is always an

assignment that satisfies at least half of the clauses in the formula; hence, it holds that 1
2n ≤ |yopt |.

Now, for β > 1, let y ′ be a β-optimal solution to MAX-NM-SAT. Then, it holds that |y ′opt | ≤ β |y ′ |.
We will now show that if β = 3α

2α+1 , then д(x ,y ′) is an α-optimal solution for MAX-3-SAT. Let y
be the set of clauses satisfied by the assignment д(x ,y ′):

|y | ≥ |y ′| − n ≥ 1

β
|y ′opt | − n =

1

β
(|yopt | + n) − n = 1

β
|yopt | −

(
1 − 1

β

)
n

≥ 1

β
|yopt | −

(
1 − 1

β

)
2|yopt | =

(
3

β
− 2

)
|yopt |.

Hence, we have that
|y |
|yopt |

≥ 3

β
− 2 =

1

α

⇒ β =
3α

2α + 1
.

Therefore, to obtain an α-optimal solution to MAX-3-SAT, we need to find a 3α
2α+1 -optimal solu-

tion to MAX-NM-SAT. �

Next, we construct a PTAS reduction from MAX-NM-SAT to our problem and this will conclude
our proof of APX-completeness for ΔAB→C→B . Note that in our proof of hardness for MAX-NM-
SAT, we constructed an instance in which every clause contains at most four literals; hence, we
use this assumption in the proof of the following lemma.

Lemma 4.12. Computing an optimal S-repair for ΔAB→C→B is APX-complete.

Proof. We construct a PTAS reduction (f ,д,k) from MAX-NM-SAT to the problem of com-
puting an optimal S-repair for ΔAB→C→B . In our construction, each variable z in a clause c will be
represented by a tuple (c,b, z) (where b = 1 if c is positive, and b = 0 otherwise). The FD C → B
will ensure that an assignment corresponding to a consistent subset is a valid truth assignment
and the FD AB → C will ensure that each consistent subset contains at most one tuple for each
clause. More formally, the input to the first problem is a formulaψ with the propositional variables
x1, . . . ,xn , such that ψ has the form c1 ∧ · · · ∧ cm where each c j is a clause. Each clause is a dis-
junction of literals from one of the following sets: (a) {xi : i = 1, . . . ,n} or (b) {¬xi : i = 1, . . . ,n}
(that is, each clause either contains only positive literals or only negative literals). The goal is to
determine what is the maximum number of clauses in the formula ψ that can be simultaneously
satisfied. Given such an input, we will construct the input f (x) = T for our problem as follows.
For each i = 1, . . . ,n and j = 1, . . . ,m, T will contain the following tuples:

• (c j , 1,xi), if c j contains only positive variables and xi appears in c j .
• (c j , 0,xi), if c j contains only negative variables and ¬xi appears in c j .

The weight of each tuple will be 1 (that is, T is an unweighted, duplicate-free table). We will
now prove that there is an assignment that satisfies at least k clauses in ψ if and only if there is
a consistent subset of the constructed table T that is obtained by deleting at most N − k tuples,
where N is the number of tuples in T .

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:25

The “if” direction. Assume that there is a consistent subset J of T that is obtained by deleting at
most N − k tuples (hence, J contains k tuples). The FD AB → C implies that no consistent subset
ofT contains two tuples (c j ,bj ,xi1) and (c j ,bj ,xi2) such that xi1 � xi2 . Thus, each consistent subset
contains at most one tuple (c j ,bj ,xi) for each c j . We will now define an assignment τ as follows:

τ (xi)
def
= bj if there exists a tuple (c j ,bj ,xi) in J for some c j . Note that the FDC → B implies that no

consistent subset contains two tuples (c j1 , 1,xi) and (c j2 , 0,xi); thus, the assignment is well defined.
Finally, as mentioned above, J contains a tuple (c j ,bj ,xi) for k clauses c j from ψ . If xi appears in

c j without negation, then it holds that bj = 1; hence, τ (xi)
def
= 1 and c j is satisfied. Similarly, if xi

appears in c j with negation, then it holds that bj = 0; hence, τ (xi)
def
= 0 and c j is satisfied. Thus,

each one of these k clauses is satisfied by τ , and we conclude that there exists an assignment that
satisfies at least k clauses inψ .

The “only if” direction. Assume that τ is an assignment that satisfies at least k clauses in ψ . We
claim that there exists a consistent subset of T that is obtained by deleting N − k tuples. Since τ
satisfies at least k clauses, for each one of these clauses c j there exists a variable xi ∈ c j , such that
τ (xi) = 1 if xi appears in c j without negation or τ (xi) = 0 if it appears in c j with negation. Let
us build a consistent subset J as follows. For each c j that is satisfied by τ , we will choose exactly
one variable xi that satisfies the above and add the tuple (c j ,bj ,xi) (where τ (xi) = bj) to J . Since
there are at least k satisfied clauses, J will contain at least k tuples; thus, it is only left to prove that
J is consistent. Let us assume, by way of contradiction, that J is not consistent. Since J contains
one tuple for each satisfied c j , no two tuples violate the FD AB → C . Thus, J contains two tuples
(c j1 , 1,xi) and (c j2 , 0,xi), but this is a contradiction to the fact that τ is an assignment (that is,
it cannot be the case that τ (xi) = 1 and τ (xi) = 0). Therefore, J is a consistent subset of T that
contains at least k tuples (hence, obtained by deleting at most N − k tuples).

Hence, given a solution y ′ to our problem on f (x), the solution д(x ,y ′) will assign the value 1
to the variable xi if there is a tuple (c j , 1,xi) inT \ y ′, and it will assign the value 0 to the variable

xk if there is a tuple (c j , 0,xk) in T \ y ′. We will now prove that if y ′ is a 8α−1
7α

-optimal solution to
our problem on f (x), then д(x ,y ′) is an α-optimal solution to MAX-NM-SAT on x . Recall that we
assumed that each clause in x contains at most four literals. Letni be the number of clauses in x that
contain i literals for i ∈ {1, 2, 3, 4}. Then, the number of clauses in x is n1 + n2 + n3 + n4, and the
number of tuples in the constructed table is N = n1 + 2n2 + 3n3 + 4n4. Let yopt be a set of clauses
satisfied by an optimal solution to MAX-NM-SAT on x and let y ′opt be an optimal solution to our

problem. As we have already mentioned before, there is always an assignment that satisfies at least

half of the clauses in the formula; hence, it holds that |yopt | ≥ n1+n2+n3+n4

2 =
4n1+4n2+4n3+4n4

8 ≥ N
8 .

For β > 1, let y ′ be a β-optimal solution to our problem. Then,

|y ′| ≤ β |y ′opt |.

We will now show that if β = 8α−1
7α

, then д(x ,y ′) is an α-optimal solution for MAX-NM-SAT. Let
y be the set of clauses satisfied by the assignment д(x ,y ′):

|y | = N − |y ′ | ≥ N − β |y ′opt | = N − β (N − |yopt |) = β |yopt | − (β − 1)N

≥ β |yopt | − (β − 1) · 8|yopt | = (8 − 7β) |yopt |.

Hence, we have that

|y |
|yopt |

≥ (8 − 7β) =
1

α

⇒ β =
8α − 1

7α
.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:26 E. Livshits et al.

Fig. 5. Classes of FD sets that cannot be simplified.

Thus, to obtain an α-optimal solution to MAX-NM-SAT, we need to find a 8α−1
7α

-optimal solution
to our problem. �

So far, we have shown that the problem of finding an optimal S-repair is APX-complete for all
the FD sets in Table 1, and this concludes the first step of our hardness proof.

4.2.2 Step 2: Classifying FD Sets. We now show that when an FD set Δ cannot be further simpli-
fied, it can be classified to one of five classes of FD sets. Later, for each one of these classes, we will
build a fact-wise reduction from one of the FD sets in Table 1 over the relation schema R (A,B,C).
We first identify that if an FD set Δ cannot be simplified, then there are at least two distinct local
minima X1 → Y1 and X2 → Y2 in Δ. By a local minimum, we mean an FD with a set-minimal lhs,
that is, an FD X → Y such that no FD Z →W in Δ satisfies that Z is a strict subset of X . We pick
any two local minima from Δ. Then, we divide the FD sets into five classes based on the relation-

ships between X1, X2, clΔ(X1) \ X1, which we denote by X̂1, and clΔ(X2) \ X2, which we denote by

X̂2. The classes are illustrated in Figure 5.

Each line in Figure 5 represents one of X1, X2, X̂1 and X̂2. If two lines do not overlap, then the

corresponding two sets are assumed to be disjoint. For example, the sets X̂1 and X̂2 in class (1)
are disjoint. Overlapping lines represent sets that have a nonempty intersection, an example being

X̂1 and X̂2 in class (2). When two dashed lines overlap, we do not assume anything about their
intersection. As an example, the sets X1 and X2 can have an empty or a nonempty intersection in
each of the classes. Finally, if a line covers another line, then the set that corresponds to the first

line contains that of the second line. For instance, the set X̂2 in class (4) contains the set X1 \ X2,

while in class (5) it holds that (X1 \ X2) � X̂2. We remark that Figure 5 covers the important cases
that we need to analyze, but it misses a few cases. The full details and the proofs are given after
the following example.

Example 4.13. In what follows, we discuss the five classes of Figure 5. Specifically, we mention
which FD set of Table 1 is used in the corresponding fact-wise reductions, and give an example of
an FD set in the class.

Class 1. We build fact-wise reductions from ΔA→C←B to the FD sets in this class. An example

of an FD set in this class is Δ1 = {A→ B,C → D}. In this case X1 = {A}, X2 = {C}, X̂1 = {B} and

X̂2 = {D}. Thus, X̂1 ∩ X2 = ∅, X̂2 ∩ X1 = ∅ and X̂1 ∩ X̂2 = ∅ and indeed the only overlapping lines
in (1) are the dashed lines corresponding to X1 and X2.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:27

Class 2. For this class, the fact-wise reductions are from ΔA→B→C . The FD set Δ2 = {A→ C,A→
D,B → C,B → E}, for example, belongs to this class. It holds that X1 = {A}, X2 = {B}, X̂1 = {C,D}
and X̂2 = {C,E}. Hence, X̂1 ∩ X2 = ∅ and X̂2 ∩ X1 = ∅, but X̂1 ∩ X̂2 � ∅, and the difference from (1)

is that the lines corresponding to X̂1 and X̂2 in (2) overlap.

Class 3. We again build fact-wise reductions from ΔA→B→C to the FD sets in this class. As an
example of an FD set in this class, we use the set Δ3 = {A→ B,A→ C,B → D}. Here, it holds that

X1 = {A}, X2 = {B}, X̂1 = {B,C,D} and X̂2 = {D}. Thus, X̂1 ∩ X2 � ∅, but X̂2 ∩ X1 = ∅. The differ-

ence from (2) is that now the lines corresponding to X2 and X̂1 overlap, and we do not assume

anything about the intersection between X̂1 and X̂2.

Class 4. Here, the fact-wise reductions are from ΔAB↔AC↔BC . An example of an FD set that belongs
to this class is Δ4 = {A→ B,B → C,C → A}. In this case, we have three local minima. We pick two

of them:A→ B and B → C . Now,X1 = {A},X2 = {B}, X̂1 = {B,C} and X̂2 = {A,C}. Thus, X̂1 ∩ X2 �
∅ and X̂2 ∩ X1 � ∅. The difference from (3) is that now the lines corresponding toX1 and X̂2 overlap.

Moreover, the line corresponding to X̂1 covers the entire line corresponding toX2 \ X1 and the line

corresponding to X̂2 covers the entire line corresponding to X1 \ X2. This means that we assume

that (X1 \ X2) ⊆ X̂2 and (X2 \ X1) ⊆ X̂1.

Class 5. For FD sets in this class, we build a fact-wise reduction from ΔAB→C→B . The FD set Δ5 =

{AB → C,C → A,C → D} is an example of an FD set that belongs to this class. Here, X1 = {A,B},
X2 = {C}, X̂1 = {C,D} and X̂2 = {A,D}, therefore X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 � ∅. The difference from

(4) is that now we assume that (X1 \ X2) � X̂2.
Note that for each class, we build infinitely many fact-wise reductions, one for each FD set in

this class.

We now show that an FD set that cannot be simplified indeed belongs to one of the five classes.
First, we prove the following.

Lemma 4.14. Let Δ be an FD set that cannot be simplified. Then, Δ contains at least two local
minima X1 → Y1 and X2 → Y2, such that X1 � X2.

Proof. Assume, by way of contradiction, that Δ does not contain two distinct local minima. In
this case, Δ contain exactly one local minimum X → A. That is, for every FD Z → B there exists
an FD Z ′ → B′ such that Z ′ ⊂ Z , except for FDs of the form X → A′. Hence, for every FD Z → B
in Δ it holds that X ⊆ Z . In this case, Δ either has a consensus FD (when X = ∅) or a common lhs
(when X � ∅), which is a contradiction to the fact that Δ cannot be simplified. �

Let Δ be an FD set that cannot be simplified, and let X1 → Y1 and X2 → Y2 be two local minima
in Δ. One of the following holds:

(1) X̂1 ∩ clΔ(X2) = ∅ and X̂2 ∩ clΔ(X1) = ∅.
(2) X̂1 ∩ X̂2 � ∅, X̂1 ∩ X2 = ∅ and X̂2 ∩ X1 = ∅.
(3) X̂1 ∩ X2 � ∅ or X̂2 ∩ X1 � ∅, but not both.

(4) X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 � ∅ and also (X1 \ X2) ⊆ X̂2 and (X2 \ X1) ⊆ X̂1.

(5) X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 � ∅ and also either (X2 \ X1) � X̂1 or (X1 \ X2) � X̂2 (or both).

In all of the above cases, we assume nothing about the intersection between X1 and X2 (that is,
the intersection may be empty or nonempty), but we do assume something about the relationship

between the rest of the attributes in the closure of X1 under Δ (that is, the attributes in X̂1) and
clΔ(X2), and also about the relationship between the rest of the attributes in the closure ofX2 under

Δ (that is, the attributes in X̂2) and clΔ(X1).

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:28 E. Livshits et al.

Fig. 6. Classification according to the five conditions on Δ, X1, and X2.

For the first two cases, we assume that there is no intersection between X̂1 and X2 and similarly

there is no intersection between X̂2 and X1. The difference between the cases is that in the first
case, we also assume that there is no intersection between X̂1 and X̂2, while in the second case, we
assume that this intersection is nonempty. For the other three cases, we assume that at least one

of the intersections X̂1 ∩ X2 or X̂2 ∩ X1 is nonempty.
In the third case, we assume that only one of the above intersections is nonempty; that is, either

X̂1 ∩ X2 � ∅ or X̂2 ∩ X1 � ∅, but not both. For the last two cases, we assume that both intersections
are not empty, and the difference between these cases is based on containment. In the fourth case,

we assume that (X1 \ X2) ⊆ X̂2 and (X2 \ X1) ⊆ X̂1), while in the last case, we assume that at least
one of these containments does not hold.

Using the decision tree of Figure 6, the reader can verify that the above five cases cover all the
possible cases. Lemma 4.14 states that a set of FDs Δ that cannot be simplified contains at least
two local minima X1 → Y1 and X2 → Y2; hence, Δ can be classified into one of the five classes
mentioned above based on these two local minima.

4.2.3 Step 3: Hard Classes. Next, we prove that for each one of the five classes mentioned above,
there is a fact-wise reduction from one of the hard schemas we discussed earlier (the schemas of
Table 1). Lemma 4.4 will then imply that computing an optimal S-repair for a nontrivial set of FDs
that cannot be simplified is APX-complete.

Note that in all of the fact-wise reductions, we assume that the set of FDs does not contain trivial
FDs, since the OSRSucceeds algorithm removes trivial FDs from Δ at each iteration. We start with
the first class.

Lemma 4.15. Let R be a relation schema and let Δ be an FD set over R that does not contain trivial
FDs. Suppose that Δ contains two distinct local minima X1 → Y1 and X2 → Y2, and the following
hold:

• X̂1 ∩ clΔ(X2) = ∅,
• X̂2 ∩ clΔ(X1) = ∅.

Then, there is a fact-wise reduction from (R (A,B,C),ΔA→C←B) to (R,Δ).

Proof. We define a fact-wise reduction Π : (R (A,B,C),ΔA→C←B) → (R,Δ), using the FDsX1 →
Y1 and X2 → Y2 and the constant � ∈ Const. Let t = (a,b, c) be a tuple over R (A,B,C) and let

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:29

{A1, . . . ,An } be the set of attributes in R. We define Π as follows:

Π(t).Ak
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� Ak ∈ X1 ∩ X2

a Ak ∈ X1 \ X2

b Ak ∈ X2 \ X1

〈a, c〉 Ak ∈ X̂1

〈b, c〉 Ak ∈ X̂2

〈a,b〉 otherwise.

It is left to show that Π is a fact-wise reduction. To do so, we prove that Π is well defined, injective
and preserves consistency and inconsistency.

Π is well defined. This is straightforward from the definition and the fact that X̂1 ∩ clΔ(X2) = ∅
and X̂2 ∩ clΔ(X1) = ∅.
Π is injective. Let t, t′ be two distinct tuples, such that t = (a,b, c) and t′ = (a′,b ′, c ′) (and
t � t′). Assume that Π(t) = Π(t′). Let us denote Π(t) = (x1, . . . ,xn) and Π(t′) = (x ′1, . . . ,x

′
n). Note

that X1 \ X2 and X2 \ X1 are not empty, since X1 � X2. Moreover, since both FDs are mini-
mal, X1 � X2 and X2 � X1. Therefore, there are l and p such that Π(t).Al = a, Π(t).Ap = b. Fur-
thermore, since X1 → Y1 and X2 → Y2 are not trivial, there are m and n such that Π(t).Am =

〈a, c〉 and Π(t).An = 〈b, c〉. Similarly, it holds that Π(t′).Al = a′, Π(t′).Ap = b
′, Π(t′).Am = 〈a′, c ′〉,

and Π(t′).An = 〈b ′, c ′〉. Hence, Π(t) = Π(t′) implies that Π(t).Al = Π(t′).Al , Π(t).Ap = Π(t′).Ap ,
Π(t).Am = Π(t′).Am and also Π(t).An = Π(t′).An . We obtain that a = a′, b = b ′ and c = c ′, which
implies t = t′.

Π preserves consistency. Let t = (a,b, c) and t′ = (a′,b ′, c ′) be two distinct tuples. We contend
that the pair {t, t′} is consistent w.r.t. ΔA→C←B if and only if the set {Π(t),Π(t′)} is consistent
w.r.t. Δ.

The “if” direction. Assume {t, t′} is inconsistent w.r.t. ΔA→C←B . We prove that {Π(t),Π(t′)} is
inconsistent w.r.t. Δ. Since {t, t′} is inconsistent w.r.t. ΔA→C←B it either holds that a = a′ and c � c ′

or b = b ′ and c � c ′ (or both). In the first case, Π(t) and Π(t′) agree on the attributes on the left-
hand side of the FD X1 → Y1, but do not agree on the attribute in Y1 (since the FD is not trivial).
Similarly, in the second case, Π(t) and Π(t′) agree on the attributes on the left-hand side of the FD
X2 → Y2, but do not agree on the attribute in Y2. Thus, {Π(t),Π(t′)} does not satisfy at least one of
these FDs and {Π(t),Π(t′)} is inconsistent w.r.t. Δ. This concludes our proof of the “if” direction.

The “only if” direction. Assume that {t, t′} is consistent w.r.t ΔA→C←B . We prove that {Π(t),Π(t′)}
is consistent w.r.t Δ. First, note that each FD that contains an attributeAk � (clΔ(X1) ∪ clΔ(X2)) on
its left-hand side is satisfied by {Π(t),Π(t′)}, since t and t′ cannot agree on bothA and B (otherwise,
the FDA→ C implies that t = t′). Thus, from now on, we will only consider FDs that do not contain
an attribute Ak � (clΔ(X1) ∪ clΔ(X2)) on their left-hand side. The FDs in ΔA→C←B imply that if t

and t′ agree on one of {A,B} then they also agree on C; thus, one of the following holds:

(1) a � a′, b = b ′ and c = c ′. In this case, Π(t) and Π(t′) only agree on the attributes Ak

such that Ak ∈ X1 ∩ X2 or Ak ∈ X2 \ X1 or Ak ∈ clΔ(X2) \ X2. That is, they only agree
on the attributes Ak such that Ak ∈ clΔ(X2). Thus, each FD that contains an attribute
Ak � clΔ(X2) on its left-hand side is satisfied. Moreover, any FD that contains only at-
tributes Ak ∈ clΔ(X2) on its left-hand side, also contains only attributes Ak ∈ clΔ(X2) on
its right-hand side (by definition of a closure). Thus, Π(t) and Π(t′) agree on both the
left-hand side and the right-hand side of such FDs and {Π(t),Π(t′)} satisfies all the FDs in
Δ.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:30 E. Livshits et al.

(2) a = a′, b � b ′ and c = c ′. This case is symmetric to the previous one; thus, a similar proof
applies for this case as well.

(3) a � a′, b � b ′. In this case, Π(t) and Π(t′) only agree on the attributes Ak such that Ak ∈
X1 ∩ X2. Since X1 → Y1 and X2 → Y2 are local minima, there is no FD in Δ that contains
only attributes Ak such that Ak ∈ X1 ∩ X2 on its left-hand side (as if there is an FD Z → B
in Δ, such that Z ⊆ X1 ∩ X2, then Z ⊂ X1 in contradiction to the fact that X1 is a local
minimum). Hence, Π(t) and Π(t′) do not agree on the left-hand side of any FD in Δ and
{Π(t),Π(t′)} is consistent w.r.t. Δ.

This concludes our proof of the “only if” direction. �

Next, we consider the second and the third classes, as one fact-wise reduction works for both.

Lemma 4.16. Let R be a relation schema and let Δ be an FD set over R that does not contain trivial
FDs. Suppose that Δ contains two distinct local minimaX1 → Y1 andX2 → Y2, and one of the following
holds:

• X̂1 ∩ X̂2 � ∅, X̂1 ∩ X2 = ∅ and X̂2 ∩ X1 = ∅,
• X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 = ∅.

Then, there is a fact-wise reduction from (R (A,B,C),ΔA→B→C) to (R,Δ).

Proof. We define a fact-wise reduction Π : (R (A,B,C),ΔA→B→C) → (R,Δ), using X1 → Y1 and
X2 → Y2 and the constant � ∈ Const. Let t = (a,b, c) be a tuple over R (A,B,C) and let {A1, . . . ,An }
be the set of attributes in R. We define Π as follows:

Π(t).Ak
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� Ak ∈ X1 ∩ X2

a Ak ∈ X1 \ X2

b Ak ∈ X2 \ X1

〈a, c〉 Ak ∈ X̂1 \ clΔ(X2)

〈b, c〉 Ak ∈ X̂2

a otherwise.

It is left to show that Π is a fact-wise reduction. To do so, we prove that Π is well defined, injective,
and preserves consistency and inconsistency.

Π is well defined. This is straightforward from the definition and the fact that X̂2 ∩ X1 = ∅ in
both cases.

Π is injective. Let t, t′ be two distinct tuples, such that t = (a,b, c) and t′ = (a′,b ′, c ′) (and t � t′).
Assume that Π(t) = Π(t′). Let us denote Π(t) = (x1, . . . ,xn) and Π(t′) = (x ′1, . . . ,x

′
n). Note that

X1 \ X2 and X2 \ X1 are not empty, since X1 � X2. Moreover, since both FDs are minimal, X1 � X2

and X2 � X1. Therefore, there are l and p such that Π(t).Al = a, Π(t).Ap = b. Furthermore, since
X2 → Y2 is not trivial, there is at least one m such that Π(t).Am = 〈b, c〉. Similarly, it holds that
Π(t′).Al = a′, Π(t′).Ap = b

′, and Π(t′).Am = 〈b ′, c ′〉. Hence, Π(t) = Π(t′) implies that Π(t).Al =

Π(t′).Al , Π(t).Ap = Π(t′).Ap and Π(t).Am = Π(t′).Am . We obtain that a = a′, b = b ′ and c = c ′,
which implies t = t′.

Π preserves consistency. Let t = (a,b, c) and t′ = (a′,b ′, c ′) be two distinct tuples. We contend
that the pair {t , t ′} is consistent w.r.t. ΔA→B→C if and only if the set {Π(t),Π(t′)} is consistent
w.r.t. Δ.

The “if” direction. Assume {t, t′} is inconsistent w.r.t. ΔA→B→C . We prove that {Π(t),Π(t′)} is
inconsistent w.r.t. Δ. Since {t, t′} is inconsistent w.r.t. ΔA→B→C , one of the following holds:

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:31

(1) a = a′ and b � b ′. For the first case of this lemma, since X̂1 ∩ X̂2 � ∅, at least one attribute

Ak ∈ X̂1 also belongs to X̂2 and it holds that Π(t).Ak = 〈b, c〉 and Π(t′).Ak = 〈b ′, c ′〉. For

the second case of this lemma, since X̂1 ∩ X2 � ∅, at least one attribute Ak ∈ X̂1 also be-
longs to X2 and it holds that Π(t).Ak = b and Π(t′).Ak = b

′. Moreover, in both cases, by
definition of a closure, the FD X1 → Ak is implied by Δ. Hence, in both cases, the tuples
Π(t) and Π(t′) agree on the attributes on the left-hand side of the FD X1 → Ak , but do not
agree on the right-hand side of this FD. If two tuples do not satisfy an FD that is implied
by a set Δ of FDs, then they also do not satisfy Δ; thus, {Π(t),Π(t′)} is inconsistent w.r.t. Δ.

(2) a = a′, b = b ′ and c � c ′. For the first case of this lemma, as mentioned above, there is an

attribute Ak ∈ X̂1 such that Π(t).Ak = 〈b, c〉 and Π(t′).Ak = 〈b ′, c ′〉. Moreover, by defini-
tion of a closure, the FD X1 → Ak is implied by Δ. The tuples Π(t) and Π(t′) agree on the
attributes on the left-hand side of the FDX1 → Ak , but do not agree on the right-hand side

of this FD. For the second case of this lemma, since it holds that X̂2 ∩ X1 = ∅, and since the
FD X2 → Y2 is not trivial, there is at least one attribute Ak ∈ X̂2 such that Π(t).Ak = 〈b, c〉
and Π(t′).Ak = 〈b ′, c ′〉. Furthermore, the FDs X2 → Ak is implied by Δ. The tuples Π(t)
and Π(t′) again agree on the attributes on the left-hand side of the FD X2 → Ak , but do
not agree on the right-hand side of this FD. In both cases, there exist two tuples that do
not satisfy an FD that is implied by Δ; thus, they also do not satisfy Δ, and {Π(t),Π(t′)} is
inconsistent w.r.t. Δ.

(3) a � a′, b = b ′ and c � c ′. In this case, Π(t) and Π(t′) agree on the attributes on the left-
hand side of the FD X2 → Y2, but do not agree on the right-hand side of this FD (since
the FD is not trivial and contains at least one attribute Ak such that Π(t).Ak = 〈b, c〉 and
Π(t′).Ak = 〈b ′, c ′〉 on its right-hand side). Therefore, {Π(t),Π(t′)} is inconsistent w.r.t. Δ.

This concludes our proof of the “if” direction.

The “only if” direction. Assume that {t, t′} is consistent w.r.t ΔA→B→C . We prove that {Π(t),Π(t′)}
is consistent w.r.t Δ. First, note that each FD that contains an attributeAk � (clΔ(X1) ∪ clΔ(X2)) on
its left-hand side is satisfied by {Π(t),Π(t′)}, since t and t′ cannot agree on A (otherwise, the FDs
A→ B and B → C imply that t = t′). Thus, from now on, we will only consider FDs that do not
contain an attributeAk � (clΔ(X1) ∪ clΔ(X2)) on their left-hand side. One of the following holds:

(1) a � a′, b = b ′ and c = c ′. In this case, Π(t) and Π(t′) only agree on the attributes Ak such

that Ak ∈ X1 ∩ X2 or Ak ∈ X2 \ X1 or Ak ∈ X̂2. That is, they only agree on the attributes
Ak such that Ak ∈ clΔ(X2). Thus, each FD that contains an attribute Ak � clΔ(X2) on its
left-hand side is satisfied. Moreover, any FD that contains only attributes Ak ∈ clΔ(X2)
on its left-hand side, also contains only attributes Ak ∈ clΔ(X2) on its right-hand side (by
definition of a closure); thus, Π(t) and Π(t′) agree on both the left-hand side and the right-
hand side of such FDs and {Π(t),Π(t′)} satisfies all the FDs in Δ.

(2) a � a′, b � b ′. In this case, Π(t) and Π(t′) only agree on the attributes Ak such that Ak ∈
X1 ∩ X2. Since X1 → Y1 and X2 → Y2 are minimal, there is no FD in Δ that contains only
attributes Ak such that Ak ∈ X1 ∩ X2 on its left-hand side. Thus, Π(t) and Π(t′) do not
agree on the left-hand side of any FD in Δ and {Π(t),Π(t′)} is consistent w.r.t. Δ.

This concludes our proof of the “only if” direction. �

We now consider the fourth class. For this class, we assume that X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 � ∅
and also that (X1 \ X2) ⊆ X̂2 and (X2 \ X1) ⊆ X̂1. In this case, Δ contains at least one more local
minimum (that is, there are at least three). Otherwise, for every FD Z → B in Δ it holds that either
X1 ⊆ Z or X2 ⊆ Z . If X1 ∩ X2 � ∅, then Δ contains a common lhs (an attribute from X1 ∩ X2). If

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:32 E. Livshits et al.

X1 ∩ X2 = ∅, then Δ contains an lhs marriage (because X1 ⊆ X̂2 and X2 ⊆ X̂1, which means that
clΔ(X1) = clΔ(X2)).

Lemma 4.17. Let R be a relation schema and let Δ be an FD set over R that does not contain trivial
FDs. Suppose that Δ contains three distinct local minimaX1 → Y1,X2 → Y2 andX3 → Y3. Then, there
is a fact-wise reduction from (R (A,B,C),ΔAB↔AC↔BC) to (R,Δ).

Proof. We define a fact-wise reduction Π : (R (A,B,C),ΔAB↔AC↔BC) → (R,Δ), usingX1 → Y1,
X2 → Y2 and X3 → Y3 and the constant � ∈ Const. Let t = (a,b, c) be a tuple over R (A,B,C) and
let {A1, . . . ,An } be the set of attributes in R. We define Π as follows:

Π(t).Ak
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� Ak ∈ X1 ∩ X2 ∩ X3

a Ak ∈ (X1 ∩ X2) \ X3

b Ak ∈ (X1 ∩ X3) \ X2

c Ak ∈ (X2 ∩ X3) \ X1

〈a,b〉 Ak ∈ X1 \ X2 \ X3

〈a, c〉 Ak ∈ X2 \ X1 \ X3

〈b, c〉 Ak ∈ X3 \ X1 \ X2

〈a,b, c〉 otherwise.

It is left to show that Π is a fact-wise reduction. To do so, we prove that Π is well defined, injective,
and preserves consistency and inconsistency.

Π is well defined. This is straightforward from the definition.

Π is injective. Let t, t′ be two distinct tuples, such that t = (a,b, c) and t′ = (a′,b ′, c ′) (and t � t′).
Assume that Π(t) = Π(t′). Let us denote Π(t) = (x1, . . . ,xn) and Π(t′) = (x ′1, . . . ,x

′
n). Note that

X1 contains at least one attribute that does not belong to X3 (otherwise, it holds that X1 ⊆ X3,
which is a contradiction to the fact that X3 is minimal). Thus, there exists an attribute Al such
that either Π(t).Al = a and Π(t′).Al = a′ or Π(t).Al = 〈a,b〉 and Π(t′).Al = 〈a′,b ′〉. Similarly, X3

contains at least one attribute that does not belong to X2. Thus, there exists an attribute Ap such
that either Π(t).Ap = b and Π(t′).Ap = b

′ or Π(t).Ap = 〈b, c〉 and Π(t′).Ap = 〈b ′, c ′〉. Finally, X2

contains at least one attribute that does not belong toX1. Thus, there exists an attributeAr such that
either Π(t).Ar = c and Π(t′).Ar = c

′ or Π(t).Ar = 〈a, c〉 and Π(t′).Ar = 〈a′, c ′〉. Hence, Π(t) = Π(t′)
implies that Π(t).Al = Π(t′).Al , Π(t).Ap = Π(t′).Ap and Π(t).Ar = Π(t′).Ar . We obtain that a = a′,
b = b ′ and c = c ′, which implies t = t′.

Π preserves consistency. Let t = (a,b, c) and t′ = (a′,b ′, c ′) be two distinct tuples. We contend
that the set {t , t ′} is consistent w.r.t. ΔAB↔AC↔BC if and only if the set {Π(t),Π(t′)} is consistent
w.r.t. Δ.

The “if” direction. Assume that {t, t′} is inconsistent w.r.t. ΔAB↔AC↔BC . We prove that
{Π(t),Π(t′)} is inconsistent w.r.t. Δ. Since {t, t′} is inconsistent w.r.t. ΔAB↔AC↔BC , t and t′ agree
on two attributes, but do not agree on the third one. Thus, one of the following holds:

• a = a′, b = b ′, and c � c ′. In this case, Π(t) and Π(t′) agree on all of the attributes that
appear on the left-hand side of X1 → Y1. Since this FD is not trivial, it must contain on its
right-hand side an attribute Ak such that Ak � X1. That is, one of the following holds: (a)
Π(t).Ak = c,(b) Π(t).Ak = 〈a, c〉, (c) Π(t).Ak = 〈b, c〉, or (d) Π(t).Ak = 〈a,b, c〉. Since c � c ′,
it holds that Π(t) and Π(t′) do not satisfy the FD X1 → Y1 and {Π(t),Π(t′)} is inconsistent
w.r.t. Δ.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:33

• a = a′, b � b ′, and c = c ′. This case is symmetric to the first one. Π(t) and Π(t′) agree on
all of the attributes that appear on the left-hand side of X2 → Y2, but do not agree on the
attribute that appears on the right-hand side of the FD.

• a � a′, b = b ′ and c = c ′. This case is also symmetric to the first one. Here, Π(t) and Π(t′)
agree on the left-hand side, but not on the right-hand side of the FD X3 → Y3.

The “only if” direction. Assume that {t, t′} is consistent w.r.t ΔAB↔AC↔BC . We prove that
{Π(t),Π(t′)} is consistent w.r.t Δ. Note that t and t′ cannot agree on more than one attribute (other-
wise, they will violate at least one FD in ΔAB↔AC↔BC). Thus, Π(t) and Π(t′) may only agree on at-
tributes that appear inX1 ∩ X2 ∩ X3 and in one of (X1 ∩ X2) \ X3, (X1 ∩ X3) \ X2 or (X2 ∩ X3) \ X1.
As mentioned above, X1 contains at least one attribute that does not belong to X3; thus, no FD in
Δ contains only attributes from X1 ∩ X2 ∩ X3 and (X1 ∩ X3) \ X2 on its left-hand side (otherwise,
X1 will not be minimal). Similarly, no FD in Δ contains only attributes from X1 ∩ X2 ∩ X3 and
(X2 ∩ X3) \ X1 on its left-hand side, and no FD in Δ contains only attributes from X1 ∩ X2 ∩ X3

and (X1 ∩ X2) \ X3 on its left-hand side. Therefore Π(t) and Π(t′) do not agree on the left-hand
side of any FD in Δ, and {Π(t),Π(t′)} is consistent w.r.t. Δ. �

Finally, we consider the fifth and last class.

Lemma 4.18. Let R be a relation schema and let Δ be an FD set over R that does not contain trivial
FDs. Suppose that Δ contains two distinct local minima X1 → Y1 and X2 → Y2, and the following
hold:

• X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 � ∅,
• (X2 \ X1) � X̂1.

Then, there is a fact-wise reduction from (R (A,B,C),ΔAB→C→B) to (R,Δ).

Proof. We define a fact-wise reduction Π : (R (A,B,C),ΔAB→C→B) → (R,Δ), using X1 → Y1,
X2 → Y2 and the constant � ∈ Const. Let t = (a,b, c) be a tuple over R (A,B,C) and let {A1, . . . ,An }
be the set of attributes in R. We define Π as follows:

Π(t).Ak
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� Ak ∈ X1 ∩ X2

c Ak ∈ X1 \ X2

b Ak ∈ (X2 \ X1) ∩ X̂1

〈a,b〉 Ak ∈ (X2 \ X1) \ X̂1

〈b, c〉 Ak ∈ X̂1 \ (X2 \ X1)
〈a,b, c〉 otherwise.

It is left to show that Π is a fact-wise reduction. To do so, we prove that Π is well defined, injective,
and preserves consistency and inconsistency.

Π is well defined. This is straightforward from the definition.

Π is injective. Let t, t′ be two distinct tuples, such that t = (a,b, c) and t′ = (a′,b ′, c ′) (and t � t′).
Assume that Π(t) = Π(t′). Let us denote Π(t) = (x1, . . . ,xn) and Π(t′) = (x ′1, . . . ,x

′
n). Since the

FD X2 → Y2 is a local minimum, it holds that X1 � X2. Thus, there is an attribute that appears
in X1, but does not appear in X2. Moreover, it holds that (X2 \ X1) � (clΔ(X1) \ X1); thus, X2 \ X1

contains at least one attribute that does not appear in clΔ(X1) \ X1. Therefore, there are l and p
such that Π(t).Al = c and Π(t′).Al = c

′, and also Π(t).Ap = 〈a,b〉 and Π(t′).Ap = 〈a′,b ′〉. Hence,
Π(t) = Π(t′) implies that Π(t).Al = Π(t′).Al and Π(t).Ap = Π(t′).Ap . We obtain that a = a′, b = b ′

and c = c ′, which implies t = t′.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:34 E. Livshits et al.

Π preserves consistency. Let t = (a,b, c) and t′ = (a′,b ′, c ′) be two distinct tuples. We contend
that the set {t , t ′} is consistent w.r.t. ΔAB→C→B if and only if the set {Π(t),Π(t′)} is consistent
w.r.t. Δ.

The “if” direction. Assume {t, t′} is inconsistent w.r.t. ΔAB→C→B . We prove that {Π(t),Π(t′)} is
inconsistent w.r.t. Δ. Since {t, t′} is inconsistent w.r.t. ΔAB→C→B , one of the following holds:

(1) a = a, b = b ′, and c � c ′. In this case, Π(t) and Π(t′) agree on all of the attributes that ap-
pear inX2. SinceX2 → Y2 is not trivial, the attributeAk inY2 does not belong toX2. That is,
one of the following holds: (a) Π(t).Ak = c , (b) Π(t).Ak = 〈b, c〉, or (c) Π(t).Ak = 〈a,b, c〉.
Since c � c ′, it holds that {Π(t),Π(t′)} violates the FD X2 → Y2 and it is inconsistent
w.r.t. Δ.

(2) b � b ′ and c = c ′. In this case, Π(t) and Π(t′) agree on all of the attributes that appear
in X1. Since X1 → Y1 is not trivial, the attribute Ak in Y1 does not belong to X1. That is,
one of the following holds: (a) Π(t).Ak = b, (b) Π(t).Ak = 〈a,b〉, (c) Π(t).Ak = 〈b, c〉, or (d)
Π(t).Ak = 〈a,b, c〉. Since b � b ′, it holds that {Π(t),Π(t′)} violates the FD X1 → Y1 and it
is again inconsistent w.r.t. Δ.

The “only if” direction. Assume that {t, t′} is consistent w.r.t ΔAB→C→B . We prove that
{Π(t),Π(t′)} is consistent w.r.t Δ. Note that t and t′ cannot agree on the value of both attributes A
and B, since if this is the case, the FDAB → C implies that they also agree on the value of attribute
C , and t = t′. One of the following holds:

(1) b � b ′ and c � c ′. In this case, Π(t) and Π(t′) only agree on the attributesAk such thatAk ∈
X1 ∩ X2. Since X1 → Y1 and X2 → Y2 are local minima, there is no FD in Δ that contains
on its left-hand side only attributes Ak such that Ak ∈ X1 ∩ X2. Thus, Π(t) and Π(t′) do
not agree on the left-hand side of any FD in Δ and {Π(t),Π(t′)} is consistent w.r.t. Δ.

(2) a � a′, b = b ′, and c = c ′. In this case, Π(t) and Π(t′) agree on all of the attributes that
belong to clΔ(X1), and only on these attributes. Any FD in Δ that contains only attributes
from clΔ(X1) on its left-hand side, also contains only attributes from clΔ(X1) on its right-
hand side (by definition of closure). Thus, Π(t) and Π(t′) satisfy all the FDs in Δ.

(3) a � a′, b = b ′, and c � c ′. In this case, Π(t) and Π(t′) only agree on the attributes Ak

such thatAk ∈ X1 ∩ X2 orAk ∈ (X2 \ X1) ∩ (clΔ(X1) \ X1). Since the FDX2 → Y2 is a local
minimum, and since X2 contains an attribute that does not belong to clΔ(X1), no FD in Δ
contains on its left-hand side only attributes Ak such that Ak ∈ X1 ∩ X2 or Ak ∈ (X2 \
X1) ∩ (clΔ(X1) \ X1). Thus, Π(t) and Π(t′) do not agree on the left-hand side of any FD in
Δ and {Π(t),Π(t′)} is consistent w.r.t. Δ. �

We now prove that computing an optimal S-repair for a set of FDs that cannot be simplified is
APX-complete.

Lemma 4.19. Let R be a relation schema and let Δ be a nontrivial FD set over R. If no simplification
can be applied to Δ, then computing an optimal S-repair for Δ is APX-complete.

Proof. If no simplification can be applied to Δ, then, as we explained above, there are at least
two local minima X1 → Y1 and X2 → Y2 in Δ. Note that we always remove trivial FDs from Δ
before applying a simplification; thus, we can assume that Δ does not contain trivial FDs. One of
the following holds:

(1) X̂1 ∩ clΔ(X2) = ∅ and X̂2 ∩ clΔ(X1) = ∅ (that is, Δ belongs to the first class). In this case,
Lemma 4.6 and Lemma 4.15 imply that computing an optimal S-repair is APX-hard.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:35

(2) X̂1 ∩ X̂2 � ∅, X̂1 ∩ X2 = ∅, and X̂2 ∩ X1 = ∅ (that is, Δ belongs to the second class). In this
case, Lemma 4.7 and Lemma 4.16 imply that computing an optimal S-repair is APX-hard.

(3) Either X̂1 ∩ X2 � ∅ or X̂2 ∩ X1 � ∅, but not both (that is, Δ belongs to the third class). In
this case, Lemma 4.7 and Lemma 4.16 imply that computing an optimal S-repair is APX-
hard.

(4) X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 � ∅ and also (X1 \ X2) ⊆ X̂2 and (X2 \ X1) ⊆ X̂1 (that is, Δ be-
longs to the fourth class). Here, Lemma 4.10 and Lemma 4.17 imply that computing an
optimal S-repair is APX-hard.

(5) X̂1 ∩ X2 � ∅ and X̂2 ∩ X1 � ∅ and also either (X2 \ X1) � X̂1 or (X1 \ X2) � X̂2 (that is, Δ
belongs to the fifth class). Lemma 4.12 and Lemma 4.18 imply that computing an optimal
S-repair is APX-hard.

Proposition 3.10 implies that computing an optimal S-repair is always in APX; thus, the problem
is actually APX-complete in each one of these cases. This concludes our proof of the lemma. �

At this point, we know that computing an optimal S-repair for a set of FDs that cannot be
simplified is APX-complete. Next, we discuss the cases where OSRSucceeds returns false on a set
of FDs that can be simplified (but cannot be reduced to a trivial set of FDs).

4.2.4 Step 4: Applying Simplifications. The OSRSucceeds algorithm starts with a set of FDs Δ
and simplifies this set using our three simplifications until it is no longer possible. We now show
that whenever OSRSucceeds simplifies an FD set Δ into an FD set Δ − X , there is a fact-wise
reduction from (R − X ,Δ − X) to (R,Δ), where R is the underlying relation schema (and R − X is
the result of removing the attributes in X from the relation R). Therefore, Lemma 4.4 implies that
if computing an optimal S-repair is APX-hard w.r.t. Δ − X , then it is also APX-hard w.r.t. Δ.

Lemma 4.20. Let R (A1, . . . ,Am) be a relation schema and let Δ be an FD set over R. Let X ⊆
{A1, . . . ,Am } be a set of attributes. Then, there is a fact-wise reduction from (R − X ,Δ − X) to (R,Δ).

Proof. We define a fact-wise reduction Π : (R − X ,Δ − X) → (R,Δ), using the constant � ∈
Const. Let t be a tuple over R − X . We define Π as follows:

Π(t).Ak
def
=

{
� Ak ∈ X
t .Ak otherwise.

It is left to show that Π is a fact-wise reduction. To do so, we prove that Π is well defined, injective,
and preserves consistency and inconsistency.

Π is well defined. This is straightforward from the definition.

Π is injective. Let t, t′ be two distinct tuples over R − X . Since t � t′, there exists an attribute Aj

in {A1, . . . ,Am } \ X , such that t.Aj � t′.Aj . Thus, it also holds that Π(t).Aj � Π(t′).Aj and Π(t) �
Π(t′).

Π preserves consistency. Let t, t′ be two distinct tuples over R − X . We contend that the set {t, t′}
is consistent w.r.t. Δ − X if and only if the set {Π(t),Π(t′)} is consistent w.r.t. Δ.

The “if” direction. Assume that {t, t′} is inconsistent w.r.t. Δ − X . We prove that {Π(t),Π(t′)} is
inconsistent w.r.t. Δ. Since {t, t′} is inconsistent w.r.t. Δ − X , there exists an FD Z → B in Δ − X ,
such that t and t′ agree on all the attributes on the left-hand side of the FD, but do not agree on
attribute B. The FD (Z ∪ X ′) → B (for some X ′ ⊆ X) belongs to Δ, and since Π(t).Ak = t .Ak and
Π(t′).Ak = t ′.Ak for each attributeAk � X , and Π(t).Ak = Π(t′).Ak = � for each attributeAk ∈ X ,
it holds that Π(t) and Π(t′) agree on all the attributes in Z ∪ X ′, but do not agree on the attribute
B; thus, {Π(t),Π(t′)} is inconsistent w.r.t. Δ.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:36 E. Livshits et al.

The “only if” direction. Assume that {t, t′} is consistent w.r.t Δ − X . We prove that {Π(t),Π(t′)}
is consistent w.r.t Δ. Let us assume, by way of contradiction, that {Π(t),Π(t′)} is inconsistent w.r.t
Δ. That is, there exists an FD Z → B in Δ, such that Π(t) and Π(t′) agree on all the attributes in
Z , but do not agree on attribute B. Clearly, it holds that B � X (since Π(t).Ai = Π(t′).Ai = � for
each attribute Ai ∈ X). Note that the FD (Z \ X) → B belongs to Δ − X . Since Π(t).Ak = t .Ak and
Π(t′).Ak = t ′.Ak for each attributeAk � X , the tuples t and t′ also agree on all the attributes on the
left-hand side of the FD (Z \ X) → B, but they do not agree on the attribute B on its right-hand
side. Thus, t and t′ violate an FD in Δ, which is a contradiction to the fact that the set {t, t′} is
consistent w.r.t. Δ − X . �

The following lemmas are straightforward based on Lemma 4.20.

Lemma 4.21. Let R be a relation schema and let Δ be an FD set over R. If Δ has a common lhs A,
then there is a fact-wise reduction from (R −A,Δ −A) to (R,Δ).

Lemma 4.22. Let R be a relation schema and let Δ be an FD set over R. If Δ has a consensus FD,
∅ → A, then there is a fact-wise reduction from (R −A,Δ −A) to (R,Δ).

Lemma 4.23. Let R be a relation schema and let Δ be an FD set over R. If Δ has an lhs marriage,
(X1,X2), then there is a fact-wise reduction from (R − X1X2,Δ − X1X2) to (R,Δ).

Note that we build the fact-wise reductions from (R − X ,Δ − X) to (R,Δ), and not from (R,Δ −
X) to (R,Δ), although the OSRSucceeds algorithm does not change the relationR. Since we remove
the attributes of X from all the FDs in Δ to obtain Δ − X , these attributes can be ignored when
computing an optimal S-repair of a table T over R w.r.t. Δ − X . This holds, since two tuples t1 and
t2 in T are in conflict w.r.t. Δ − X if and only if the tuples t ′1 and t ′2, obtained by removing the
attributes of X from the tuples t1 and t2, are in conflict w.r.t. Δ. Hence, removing the attributes of
X from R does not affect the complexity of the problem.

Next, we use all the above results to prove the negative side of Theorem 3.4.

4.2.5 Combining Everything. We now prove that if OSRSucceeds(Δ) returns false, then com-
puting an optimal S-repair is APX-complete. We prove that by induction on n, the number of sim-
plifications that will be applied to Δ by OSRSucceeds. The basis of the induction (that is, n = 0), is
a direct consequence of Lemma 4.19. We finish our proof with the following lemma.

Lemma 4.24. Let R be a relation schema and let Δ be an FD set over R. If OSRSucceeds(Δ) returns
false, then computing an optimal S-repair for Δ is APX-complete.

Proof. We will prove the lemma by induction on n, the number of simplifications that will
be applied to Δ by OSRSucceeds. The basis of the induction is n = 0. In this case, Lemma 4.19
implies that computing an optimal S-repair is indeed APX-complete. For the inductive step, we
need to prove that if the claim is true for all n = 1, . . . ,k − 1, it is also true for n = k . In this
case, OSRSucceeds(Δ) will start by applying a simplification to the problem. One of the following
holds:

(1) Δ has a common lhs A. Note that OSRSucceeds(Δ) will return false only if
OSRSucceeds(Δ −A) returns false. From the inductive step, we know that if
OSRSucceeds(Δ −A) returns false, then computing an optimal S-repair for Δ −A is APX-
complete. Thus, Lemma 4.21 implies that computing an optimal S-repair for Δ is APX-hard.

(2) Δ has a consensus FD ∅ → A. The algorithm OSRSucceeds(Δ) will return false
only if OSRSucceeds(Δ −A) returns false. From the inductive step, we know that if
OSRSucceeds(Δ −A) returns false, then computing an optimal S-repair for Δ −A is APX-
complete. Thus, Lemma 4.22 implies that computing an optimal S-repair for Δ is APX-hard.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:37

(3) Δ has an lhs marriage (X1,X2). Again, OSRSucceeds(Δ) will return false only if
OSRSucceeds(Δ − X1X2) returns false. From the inductive step, we know that if
OSRSucceeds(Δ − X1X2) returns false, then computing an optimal S-repair for Δ − X1X2

is APX-complete. Thus, Lemma 4.23 implies that computing an optimal S-repair for Δ is
APX-hard.

Proposition 3.10 implies that computing an optimal S-repair is always in APX; thus, the problem
is APX-complete in each one of these cases. �

This concludes our proof of Theorem 3.4.

5 COMPUTING AN OPTIMAL U-REPAIR

In this section, we focus on the problem of computing an optimal U-repair and an approximation
thereof. We give general results that assist in the complexity analysis of the problem, compare it to
the problem of finding an optimal S-repair (discussed in the previous section), and identify suffi-
cient conditions for efficient reductions between the two problems. Unlike S-repairs, the existence
of a dichotomy for optimal U-repairs remains an open problem.

5.1 Reductions between FD Sets

For a set Δ of FDs, we use attr (Δ) to denote the set of attributes that appear in Δ (i.e., the union
of lhs and rhs over all the FDs in Δ). Two FD sets Δ1 and Δ2 (over the same schema) are attribute
disjoint if attr (Δ1) and attr (Δ2) are disjoint. For example, {A→ BC,C → D} and {E → FG} are
attribute disjoint. The following proposition shows a decomposability property on the optimal
U-repairs of an FD set that can be divided into two attribute-disjoint FD sets.

Proposition 5.1. LetT be a table over a relation schema R. Let Δ be a set of FDs over R such that
Δ = Δ1 ∪ Δ2 for two attribute disjoint FD sets Δ1 and Δ2. IfU ,U1,U2 are optimal U-repairs ofT w.r.t.
Δ,Δ1,Δ2, respectively, then distupd (U ,T) = distupd (U1,T) + distupd (U2,T).

Proof. Let us denote the Hamming distance of a tuple i ∈ ids(T) w.r.t. a subset of attributes
P ⊆ attr (Δ) asHP (T [i],U [i]) (i.e., the number of attributesA ∈ P for whichT [i].A � U [i].A). Since
U is an optimal U-repair of T w.r.t. Δ, no attribute A such that A � attr (Δ) is updated in U . If this
is not the case, then we can build another U-repairU ′ that agrees withU on every value in an at-
tributeA ∈ attr (Δ), and agrees withT on every value in an attribute B � attr (Δ). The tableU ′ also
satisfies Δ and distupd (U ′,T) < distupd (U ,T), which is a contradiction to the fact that U is an op-
timal U-repair. Clearly, for each i ∈ ids(T) it holds that Hattr (Δ) (T [i],U [i]) = Hattr (Δ1) (T [i],U [i]) +
Hattr (Δ2) (T [i],U [i]). Hence, we can build two U-repairs U ′1 ,U

′
2 from U , one for Δ1 and one for Δ2,

by taking the values of the attributes in attr (Δ1) (respectively, attr (Δ2)) from U , and keeping the
remaining values unchanged. Then, it holds that distupd (U ,T) = distupd (U ′1 ,T) + distupd (U ′2 ,T). It
is only left to prove that U ′1 and U ′2 are optimal U-repairs of T w.r.t. Δ1 and Δ2, respectively.

Let us assume, by way of contradiction, thatU ′1 is not an optimal U-repair ofT w.r.t. Δ1 (a similar
proof applies forU ′2). Then, we can construct another U-repairU ′ ofT w.r.t. Δ, by taking the values
of the attributes in attr (Δ1) fromU1 (which is an optimal U-repair ofT w.r.t. Δ1), the values of the
attributes in attr (Δ2) from U ′2 , and the rest of the values from the original table T . Since U1 is an
optimal U-repair of T w.r.t. Δ1, it does not update any attribute that does not appear in attr (Δ1).
Thus, it again holds that distupd (U ′,T) = distupd (U1,T) + distupd (U ′2 ,T), and since distupd (U1,T) <
distupd (U ′1 ,T), it holds that distupd (U ′,T) < distupd (U ,T), which is a contradiction to the fact that
U is an optimal U-repair of T w.r.t. Δ. �

Using Proposition 5.1, we can show the following theorem, which implies that to determine the
complexity of the union of two attribute-disjoint FD sets, it suffices to look at each set separately.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:38 E. Livshits et al.

Theorem 5.2. Suppose that Δ = Δ1 ∪ Δ2 where Δ1 and Δ2 are attribute disjoint. The following
hold.

(1) There is a polynomial-time algorithm that, given a table T and α-optimal U-repairs of T
w.r.t. Δ1 and Δ2, produces an α-optimal U-repair of T w.r.t. Δ.

(2) For each i ∈ {1, 2}, there is a strict reduction from the problem of computing an α-optimal
U-repair for Δi to the problem of computing an α-optimal U-repair for Δ.

Proof. (1) We argue that an α-optimal U-repairU α ofT w.r.t. Δ can be obtained by composing
α-optimal U-repairs U α

1 ,U
α
2 of T w.r.t. Δ1,Δ2, respectively. Suppose that U ,U1,U2 are optimal U-

repairs ofT w.r.t. Δ,Δ1,Δ2, respectively. SinceU α
1 ,U

α
2 areα-optimal U-repairs, the following holds:

distupd (U α
1 ,T) ≤ αdistupd (U1,T) and distupd (U α

2 ,T) ≤ αdistupd (U2,T).

We construct a U-repair U α of T w.r.t. Δ by copying the values of the attributes in attr (Δ1) from
U1 and the values of the attributes in attr (Δ2) from U2. The rest of the values are copied from the
original table T . The following holds:

distupd (U α ,T) ≤ distupd (U α
1 ,T) + distupd (U α

2 ,T) ≤ α (distupd (U1,T) + distupd (U2,T))

= αdistupd (U ,T) (from Proposition 5.1).

Hence, U α is an α-optimal U-repair of T w.r.t. Δ.
(2) We prove the claim for Δ1. The proof for Δ2 is symmetric. Given an input T to the first

problem, we construct an input f (T) (that we denote by T0) to the second problem by updating
the values of all the attributes A such that A � attr (Δ1) to 0, and keeping the rest of the values un-
changed. Let U ,U1,U2 denote optimal U-repairs of T0 w.r.t. Δ,Δ1,Δ2, respectively. Proposition 5.1
implies that

distupd (U ,T0) = distupd (U1,T0) + distupd (U2,T0).

No FDs in Δ2 are violated by the tuples in T0, since Δ1 and Δ2 are attribute disjoint, and it holds
that T0[i].A = 0 for every tuple i ∈ ids(T0) and every attribute A � attr (Δ1). Hence, U2 = T0, and
distupd (U2,T0) = 0. Therefore,

distupd (U ,T0) = distupd (U1,T0).

Now, given an α-optimal U-repairU α ofT0 w.r.t. Δ, we generate a tableU α
1 by copying the values

of all the attributes in attr (Δ1) fromU α and keeping the other attributes unchanged (i.e., as inT0).
Since U α is an α-optimal U-repair of T0 w.r.t. Δ, the following holds:

distupd (U α ,T0) ≤ αdistupd (U ,T0).

Then, we have distupd (U α
1 ,T0) ≤ distupd (U α ,T0) ≤ αdistupd (U ,T0) = αdistupd (U1,T0).

Since the attributes that do not belong to attr (Δ1) are unchanged in U α
1 and U1, and the values

of the attributes in attr (Δ1) are the same inT0 andT , we can construct an α-optimal U-repairU ′α1
ofT fromU α

1 by copying all the values of the attributes in attr (Δ1) fromU α
1 and copying the rest of

the values from T . Similarly, we can construct an optimal U-repairU ′1 of T fromU1 by copying all
the values of the attributes in attr (Δ1) fromU1 and copying the rest of the values from T . Clearly,
it holds that distupd (U α

1 ,T0) = distupd (U ′α1 ,T) and distupd (U1,T0) = distupd (U ′1 ,T). Thus,

distupd (U ′α1 ,T) ≤ αdistupd (U ′1 ,T).

This gives us an α-optimal U-repair of T w.r.t. Δ1 and that concludes our proof. �

Example 5.3. Consider the following set of FDs:

Δ
def
= {item→ cost , buyer→ address}.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:39

We will later show that if Δ consists of a single FD, then an optimal U-repair can be computed in
polynomial time. Hence, we can compute an optimal U-repair under Δ1 = {item→ cost} and under
Δ2 = {buyer→ phone}. Then, Theorem 5.2 implies that an optimal U-repair can be computed in
polynomial time under Δ as well.

Now consider the following set of FDs:

Δ′
def
= {item→ cost , buyer→ address , address→ state}.

Kolahi and Lakshmanan [33] proved that it is NP-hard to compute an optimal U-repair for {A→
B,B → C}, by reduction from the problem of finding a minimum vertex cover of a graph G. Their
reduction is, in fact, a PTAS reduction if we use vertex cover in a graph of a bounded degree [2].
Hence, computing an optimal U-repair is APX-hard for this set of FDs. Theorem 5.2 then implies
that it is also APX-hard for Δ′.

5.2 Reductions by Removing Consensus FDs

Next, we discuss the problem in the presence of consensus FDs. The first property we show below
states that the problem of computing an optimal U-repair w.r.t. a consensus FD can be solved in
polynomial time.

Proposition 5.4. An optimal U-repair for Δ = {∅ → A} is computable in polynomial time.

Proof. Consider a table T over a schema R that violates the FD ∅ → A. That is, at least two
tuples in T disagree on the value of attribute A. We obtain a U-repair U of T in the following
way. For every value a that appears in attribute A, we compute the total weightWa of the tuples
in σA=aT (i.e.,Wa = wT (σA=aT)). Then, we choose the value a0, having the maximum weightWa

among all such a’s (that is,Wa0 ≥Wa for all a ∈ πAT [∗]). We keep the tuples in σA=a0T unchanged,
and update the value of attribute A in every other tuple t ∈ σA=aT for a � a0 to a0. Clearly, U is
consistent, since now every tuple t in T will have t.A = a0.

To see that U is an optimal U-repair, first note that a repair with a lower distance cannot be
obtained by setting the A values to a fresh constant from the infinite domain, since choosing a
value from the active domain saves us the cost of the repair for at least one tuple in T . Now,
assume that some other value a1 � a0 has been chosen for all tuples in T in a repair U1 for which
distupd (U1,T) < distupd (U ,T). Note thatH (T [i],U1[i]) = 0 if i ∈ ids (σA=a1T) andH (T [i],U1[i]) = 1
otherwise. Thus,

distupd (U1,T) =
∑

i ∈ids(T)

wT (i) · H (T [i],U1[i]) =
∑
a�a1

∑
i ∈ids(σA=aT)

wT (i) =
∑
a�a1

Wa =
∑

i ∈ids(T)

wT (i) −Wa1 ,

whereas

distupd (U ,T) =
∑

i ∈ids(T)

wT (i) −Wa0 .

SinceWa0 ≥Wa1 , it holds that distupd (U1,T) ≥ distupd (U ,T), which is a contradiction the assump-
tion that distupd (U1,T) < distupd (U ,T). Hence, U is an optimal U-repair. �

Recall that, for a set Δ of FDs and a set X of attributes, the set Δ − X denotes the set of FDs
that is obtained from Δ by removing each attribute of X from the lhs and rhs of every FD. Also
recall that clΔ(∅) is the set of all consensus attributes. Using the above results, we prove Theo-
rem 5.5, which states that consensus FDs do not change the complexity of the problem. The proof
uses Theorem 5.2, and a special treatment of the case where all FDs are consensus FDs using
Proposition 5.4.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:40 E. Livshits et al.

Theorem 5.5. Let Δ be a set of FDs. There is a strict reduction from the problem of computing an
optimal U-repair for Δ to that of computing an optimal U-repair for Δ − clΔ(∅), and vice versa.

Proof. We start by proving that there is a strict reduction from the problem of computing an
optimal U-repair for Δ to that of computing an optimal U-repair for Δ − clΔ(∅). Proposition 5.4
states that an optimal U-repair w.r.t. {∅ → clΔ(∅)} (which is also an α-optimal U-repair for any
α ≥ 1) can be computed in polynomial time. Therefore, using the fact that Δ and {∅ → clΔ(∅)} ∪
(Δ − clΔ(∅)) are equivalent and {∅ → clΔ(∅)} and (Δ − clΔ(∅)) are attribute disjoint, this direction
follows from the first part of Theorem 5.2. The second direction follows immediately from the
second part of Theorem 5.2. �

As an example of applying Theorem 5.5, if Δ consists of only consensus FDs, then an optimal
U-repair can be computed in polynomial time, since Δ − clΔ(∅) is empty. As another example,
if Δ is the set {∅ → D,AD → B,B → CD}, then Δ − clΔ(∅) = {A→ B,B → C} and, according to
Theorem 5.5, computing an optimal U-repair is APX-hard, since this problem is hard for {A→
B,B → C} due to Kolahi and Lakshmanan [33], as explained in Example 5.3.

5.3 Reductions to/from Subset Repairing

In this section, we establish several results that enable us to infer complexity results for the problem
of computing an optimal U-repair from that of computing an optimal S-repair via polynomial-time
reductions. We first need a notation.

Let Δ be a set of FDs. An lhs cover of Δ is a setC of attributes that hits every nonempty lhs, that
is,X ∩C � ∅ for everyX → Y in Δ, such thatX � ∅. We denote the minimum cardinality of an lhs
cover of Δ by mlc(Δ). For instance, if Δ is nonempty and has a common lhs (e.g., Figure 1), then
mlc(Δ) = 1.

The results of this section are based on the following proposition, which shows that we can
transform a consistent update into a consistent subset (with no extra cost) and, in the absence of
consensus FDs, a consistent subset into a consistent update (with some extra cost). We give the
proof here, as it shows the actual constructions.

Proposition 5.6. Let Δ be a set of FDs and T a table. The following can be done in polynomial
time.

(1) Given a consistent update U , construct a consistent subset S such that distsub (S,T) ≤
distupd (U ,T).

(2) Given a consistent subset S , and assuming that Δ is consensus free, construct a consistent
update U such that distupd (U ,T) ≤ mlc(Δ) · distsub (S,T).

Proof. For (1), we construct S from U by excluding any i ∈ ids(T) such that T [i] has at least
one attribute updated in U (i.e., H (T [i],U [i]) ≥ 1). For (2), we construct U from S as follows. Let
C be an lhs cover of minimum cardinality mlc(Δ). The tuple of each i ∈ ids(S) is left intact, and for
i ∈ ids(T) \ ids(S), we update the value ofT [i].A for each attribute A ∈ C to a fresh constant from
our infinite domain Val. Since C is an lhs cover and there are no consensus FDs, for all X → Y in
Δ it holds that two distinct tuples inU that agree on X must correspond to intact tuples; hence,U
is consistent (as S is consistent). �

As we discuss later in Section 5.4, Proposition 5.6, combined with Proposition 3.10, reestab-
lishes the result of Kolahi and Lakshmanan [33], stating that computing a U-repair is in APX. We
also establish the following additional consequences of Proposition 5.6. The first is an immediate
corollary (that we refer to later on) about the relationship between optimal repairs.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:41

Corollary 5.7. Let Δ be a set of FDs, T a table, S an optimal S-repair of T , and U an optimal U-
repair ofT . Then, distsub (S,T) ≤ distupd (U ,T). Moreover, if Δ is consensus free, then distupd (U ,T) ≤
mlc(Δ) · distsub (S,T).

The second consequence relates to FD sets Δ with a common lhs, that is, mlc(Δ) = 1.

Corollary 5.8. Let Δ be an FD set with a common lhs. There is a strict reduction from the problem
of computing an optimal S-repair to that of computing an optimal U-repair, and vice versa.

For example, if Δ consists of a single FD, then an optimal U-repair can be computed in polyno-
mial time. Additional examples follow.

Example 5.9. To illustrate the use of Corollary 5.8, consider the FD set Δ of our running example
(Figure 1). Since Δ has a common lhs, and we have established in Example 3.5 that an optimal S-
repair for Δ can be found in polynomial time (i.e., Δ passes the test of OSRSucceeds), we get that
an optimal U-repair can also be computed in polynomial time for Δ.

As another illustration, consider the following FD set:

Δ1
def
= {id country→ passport , id passport→ country}.

Again, Δ1 has a common lhs and Δ1 passes the test of OSRSucceeds (by applying common lhs
followed by an lhs marriage), and therefore, Theorem 3.4 implies that an optimal U-repair can be
found in polynomial time.

Finally, consider the following set of FDs:

Δ2
def
= {state city→ zip , state zip→ country}.

The reader can verify that Δ2 fails OSRSucceeds, and therefore, from Theorem 3.4, we conclude
that computing an optimal U-repair is APX-complete.

By combining Theorem 5.5, Corollary 5.8, and Corollary 3.6, we conclude the following.

Corollary 5.10. If Δ is a chain FD set, then an optimal U-repair is computable in polynomial
time.

Proof. If Δ is a chain FD set, then so is Δ − clΔ(∅). Theorem 5.5 states that computing an optimal
U-repair has the same complexity under the two FD sets. Moreover, if Δ − clΔ(∅) is nonempty, then
it has at least one common lhs. From Corollary 5.8, we conclude that the problem then strictly
reduces to computing an S-repair, which, by Corollary 3.6, can be done in polynomial time. �

Hence, for chain FD sets, an optimal repair can be computed for both subset and update variants.

Comparison to S-Repairs. Corollaries 5.8 and 5.10 state cases where computing an optimal S-
repair has the same complexity as computing an optimal U-repair. A basic case (among others)
that the corollaries do not cover is in Proposition 5.11, which uses Δ = {A→ B,B → A}, and where
again both variants have the same (polynomial-time) complexity. In the proof of Proposition 5.11,
we show that, even though mlc(Δ) is 2, we have distupd (U ,T) = distsub (S,T) for all tablesT over R,
optimal U-repairsU and optimal S-repairs S . Since Δ passes the test of OSRSucceeds (by applying
lhs marriage), from Theorem 3.4 an optimal S-repair can be computed in polynomial time, and
therefore an optimal U-repair of {A→ B,B → A} can also be computed in polynomial time (note
that the FDs {A→ B,B → A} imply that in a consistent update, one value ofA cannot be associated
with multiple values of B and vice versa).

Proposition 5.11. An optimal U-repair for Δ = {A→ B,B → A} can be computed in polynomial
time.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:42 E. Livshits et al.

Proof. LetT be a table over a relation schemaR. We now prove that distupd (U ,T) = distsub (S,T)
for an optimal U-repair U and an optimal S-repair S of T w.r.t. Δ. Corollary 5.7 implies that

distsub (S,T) ≤ distupd (U ,T). (4)

Given S , we can construct a consistent update U of T by keeping the tuples in S unchanged, and
updating the value in either attributeA or attribute B for the rest of the tuples, as follows. Consider
any tuple t ∈ T \ S . There must exist a tuple t′ ∈ S with either t.A = t′.A or t.B = t′.B; otherwise,
t could be included in S , which contradicts the optimality of S . If there exists a tuple t′ ∈ S with
t.A = t′.A, then we change the value of t.B to the value of t′.B. Analogously, if there exists a
tuple t′ ∈ S with t.B = t′.B, then we change the value of t.A to the value of t′.A. Hence, we get a
consistent update U with

distsub (S,T) ≥ distupd (U ,T). (5)

Combining the inequalities Equations (4) and (5), we get that U is an optimal U-repair of T w.r.t.
Δ.

Since Δ passes the test of OSRSucceds, Theorem 3.4 implies that an optimal S-repair S can be
computed in polynomial time, from which an optimal U-repair can be computed in polynomial
time as described above. �

Do the two variants of optimal repairs feature the same complexity for everyset of FDs? Next, we
answer this question in a negative way.

We have already seen an example of an FD set Δ where an optimal U-repair can be computed in
polynomial time, but finding an S-repair is APX-complete. Indeed, Example 5.3 shows that {A→
B,C → D} is a tractable case for optimal U-repairs; yet, it fails the test of OSRSucceeds, and is
therefore hard for optimal S-repairs (Theorem 3.4). The question of whether there exists a set of
FDs for which computing an optimal U-repair is hard, while computing an optimal S-repair can
be done in polynomial time remains open.4

5.4 Approximation

In this section, we discuss approximations for optimal U-repairs. We restrict the discussion to FD
sets Δ that are nonempty and consensus free. Note that this is not a limiting assumption, since
empty Δs are trivially tractable, and consensus FDs can be eliminated, without increasing the
approximation ratio, due to Theorem 5.5.

The combination of Propositions 3.10 and 5.6 gives the following.

Theorem 5.12. An α-optimal U-repair can be computed in polynomial time for α = 2 ·mlc(Δ).

Observe that the approximation ratio can be further improved by applying Theorem 5.2: if Δ
is the union of attribute-disjoint FD sets Δ1 and Δ2, then an α-optimal U-repair can be computed
(under Δ) where α = 2 ·max{mlc(Δ1),mlc(Δ2)}.

Kolahi and Lakshmanan [33] gave a constant-factor approximation algorithm for U-repairs (as-
suming Δ is fixed). We first explain their ratio, and then compare it to ours.

Let Δ be a set of FDs, and assume (without loss of generality) that the rhs of each FD consists
of a single attribute. By MFS(Δ), we denote the maximum number of attributes in the lhs of any
FD in Δ. An implicant of an attribute A is a set X of attributes such that X → A is entailed by Δ. A
core implicant of A is a set C of attributes that hits every implicant of A (i.e., X ∩C � ∅ whenever
X → A is in the closure of Δ). A minimum core implicant of A is a core implicant of A with the

4In the conference paper Reference [37], we claimed that {A→ B, B → A, B → C } is an example; however, we later found

an error in our proof of hardness for U-repairs. In fact, the complexity of computing an optimal U-repair is still open for

this case.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:43

smallest cardinality. By MCI (Δ), we denote the size of the largest minimum core implicant over
all attributes A.

Theorem 5.13. [33] An α-optimal U-repair can be computed in polynomial time where α =
(MCI (Δ) + 2) · (2MFS(Δ) − 1).

In both Theorems 5.12 and 5.13, the approximation ratios are constants under data complexity,
but depend on Δ. It is still unknown whether there is a constant α that applies to all FD sets Δ.
Yet, it is known that a constant-ratio approximation cannot be obtained in polynomial time under
combined complexity (where R, T , and Δ are all given as input) [33].

Although the proof of Theorem 5.12 is much simpler than the non-trivial proof of Theorem 5.13
given in Reference [33], it can be noted that the approximation ratios in these two theorems are
not directly comparable. If k is the number of attributes, then the worst-case approximation ratio
in Theorem 5.13 is quadratic in k , while the worst-case approximation in Theorem 5.12 is linear
in k (precisely, linear in min(k, |Δ|)). Moreover, an easy observation is that the ratio between the
two approximation ratios can be at most linear in k . In the remainder of this section, we illustrate
the difference between the approximations with examples.

First, we show an infinite sequence of FD sets where the approximation ratio of Theorem 5.12
is Θ(k) and that of Theorem 5.13 is Θ(k2). For a natural number k ≥ 1, we define Δk as follows:

Δk
def
= {A0 · · ·Ak → B0,B0 → C,B1 → A0, . . . , Bk → A0}.

The approximation ratio for Δk given by Theorem 5.12 is 2(k + 2). For the approximation ratio of
Theorem 5.13, we have MFS(Δk) = k + 1 (due to the FD A0 · · ·Ak → B) and MCI (Δk) = k (since
the core implicant of A0 is {B1, . . . ,Bk }). Hence, the approximation ratio of Theorem 5.13 grows
quadratically with k (i.e., it is Θ(k2)).

However, below is a sequence of FD sets in which the approximation ratio of Theorem 5.12
grows linearly with k , while that of Theorem 5.13 is a constant:

Δ′k
def
= {A0A1 → B0, A1A2 → B1, . . . , AkAk+1 → Bk }.

Here, it holds that mlc(Δ′
k

) = �(k + 1)/2�, that MFS(Δ′
k

) = 2, and that MCI (Δ′
k

) = 1. Therefore, the
approximation ratio of Theorem 5.12 is Θ(k) while that of Theorem 5.13 is constant.

The following two theorems show that computing an optimal U-repair is hard for both Δk and
Δ′

k
; thus, an approximation is, indeed, needed. The proofs of both theorems are in the Appendix.

Theorem 5.14. Let k ≥ 1 be fixed. Then, computing an optimal U-repair is APX-complete for
R (A0, . . . ,Ak ,B0, . . . ,Bk ,C) and Δk .

Theorem 5.15. Let k ≥ 1 be fixed. Then, computing an optimal U-repair is APX-complete for
R (A0, . . . ,Ak+1,B0, . . . ,Bk) and Δ′

k
.

Clearly, one can take the benefit of the approximations of both Theorems 5.12 and 5.13 by com-
puting U-repairs by both algorithms and selecting the one with the smaller cost. As we showed,
this combined approximation outperforms each of its two components.

6 DISCUSSION AND FUTURE WORK

We investigated the complexity of computing an optimal S-repair and an optimal U-repair. For the
former, we established a dichotomy over all sets of FDs (and schemas). For the latter, we developed
general techniques for complexity analysis, showed concrete complexity results, and explored the
connection to the complexity of S-repairs. We presented approximation results and, in the case
of U-repairs, compared to the approximation of Kolahi and Lakshmanan [33]. In the case of S-
repairs, we drew a direct connection to probabilistic database repairs, and completed a dichotomy

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:44 E. Livshits et al.

by Gribkoff et al. [28] to the entire space of FDs. Quite a few directions are left for future investi-
gation, and we conclude with a discussion of some of these.

Some immediate open problems remain for future investigation. For one, our understanding of
the complexity of computing an optimal U-repair is considerably more restricted than that of an
optimal S-repair. We would like to complete our complexity analysis for optimal U-repairs into a
full dichotomy. In particular, it remains open whether there is any set of FDs such that computing
an optimal U-repair is hard while computing an optimal S-repair is tractable. More fundamentally,
we would like to incorporate restrictions on the allowed value updates. Our results are heavily
based on the ability to update any cell with any value from an infinite domain. A natural restriction
on the update repairs is to allow revising only certain attributes, possibly using a finite (or even
small) space of possible new values. It is not clear how to incorporate such a restriction in our
results and proof techniques.

As our results are restricted to FDs, an obvious important direction is to extend our study to
other types of integrity constraints, such as denial constraints [25], conditional FDs [13], referen-
tial constraints [21], and tuple-generating dependencies [9]. Moreover, the repair operations we
considered are either exclusively tuple deletions or exclusively value updates. Hence, another clear
direction is to allow mixtures of deletions, insertions and updates, where the cost depends on the
operation type, the involved tuple, the involved attribute (in the case of updates), and the new and
old attribute values.

In the case of S-repairs, we are interested in incorporating preferences, as in the framework of
prioritized repairing by Staworko et al. [41]. There, priorities among tuples allow us to eliminate
subset repairs that are inferior to others (where “inferior” has several possible interpretations).
It may be the case that priorities are rich enough to clean the database unambiguously [32]. A
relevant question is, then, what is the minimal number of tuples that we need to delete to have an
unambiguous repair? Alternatively, how many preferences are needed for this cause?

REFERENCES

[1] Foto N. Afrati and Phokion G. Kolaitis. 2009. Repair checking in inconsistent databases: Algorithms and complexity.

In Proceedings of the ICDT. ACM, 31–41.

[2] Paola Alimonti and Viggo Kann. 2000. Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237, 1–2

(2000), 123–134.

[3] Omid Amini, Stéphane Pérennes, and Ignasi Sau. 2009. Hardness and approximation of traffic grooming. Theor. Com-

put. Sci. 410, 38–40 (2009), 3751–3760.

[4] Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. 2006. Clean answers over dirty databases: A probabilistic ap-

proach. In Proceedings of the ICDE. IEEE Computer Society, 30.

[5] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent query answers in inconsistent databases.

In Proceedings of the PODS. ACM, 68–79.

[6] Ahmad Assadi, Tova Milo, and Slava Novgorodov. 2017. DANCE: Data cleaning with constraints and experts. In

Proceedings of the ICDE. IEEE Computer Society, 1409–1410.

[7] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V. Kann. 1999. Complexity and

Approximation: Combinatorial Optimization Problems and Their Approximability Properties (1st ed.). Springer-Verlag,

Berlin.

[8] Reuven Bar-Yehuda and Shimon Even. 1981. A linear-time approximation algorithm for the weighted vertex cover

problem. J. Algor. 2, 2 (1981), 198–203.

[9] Catriel Beeri and Moshe Y. Vardi. 1984. Formal systems for tuple and equality generating dependencies. SIAM J.

Comput. 13, 1 (1984), 76–98.

[10] Moria Bergman, Tova Milo, Slava Novgorodov, and Wang-Chiew Tan. 2015. QOCO: A query oriented data cleaning

system with oracles. Proc. Very Large Data Base 8, 12 (2015), 1900–1903.

[11] Leopoldo E. Bertossi. 2018. Measuring and computing database inconsistency via repairs. In Proceedings of the SUM

(Lecture Notes in Computer Science), Vol. 11142. Springer, 368–372.

[12] Leopoldo E. Bertossi. 2018. Repair-based degrees of database inconsistency: Computation and complexity. CoRR

abs/1809.10286 (2018).

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

Computing Optimal Repairs for Functional Dependencies 4:45

[13] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2007. Conditional functional

dependencies for data cleaning. In Proceedings of the ICDE. IEEE, 746–755.

[14] Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. 2017. Expressive power

of entity-linking frameworks. In Proceedings of the ICDT (LIPIcs), Vol. 68. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 10:1–10:18.

[15] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. 1984. Inclusion dependencies and their interaction

with functional dependencies. J. Comput. Syst. Sci. 28, 1 (1984), 29–59.

[16] Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity maintenance using tuple deletions. Info. Com-

put. 197, 1–2 (2005), 90–121.

[17] E. F. Codd. 1975. Recent investigations in relational data base systems. In Proceedings of the Conference on Data: Its

Use, Organization, and Management (ACM Pacific’75). 15–20.

[18] P. Crescenzi. 1997. A short guide to approximation preserving reductions. In Proceedings of the IEEECCC. IEEE Com-

puter Society, Washington, DC, 262.

[19] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, and Nan

Tang. 2013. NADEEF: A commodity data cleaning system. In Proceedings of the SIGMOD. ACM, 541–552.

[20] Nilesh N. Dalvi and Dan Suciu. 2004. Efficient query evaluation on probabilistic databases. In Proceedings of the VLDB.

Morgan Kaufmann, 864–875.

[21] C. J. Date. 1981. Referential integrity. In Proceedings of the VLDB. VLDB Endowment, 2–12.

[22] Jianfeng Du, Guilin Qi, and Yi-Dong Shen. 2013. Weight-based consistent query answering over inconsistent SHIQ

knowledge bases. Knowl. Info. Syst. 34, 2 (2013), 335–371.

[23] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. 2015. Dichotomies in the complexity of preferred repairs.

In Proceedings of the PODS. ACM, 3–15.

[24] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management. Morgan & Claypool Publishers.

[25] Terry Gaasterland, Parke Godfrey, and Jack Minker. 1992. An overview of cooperative answering. J. Intell. Info. Syst.

1, 2 (1992), 123–157.

[26] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013. The LLUNATIC data-cleaning frame-

work. Proc. Very Large Data Base 6, 9 (2013), 625–636.

[27] John Grant and Anthony Hunter. 2017. Analysing inconsistent information using distance-based measures. Int. J.

Approx. Reason. 89 (2017), 3–26.

[28] Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. 2014. The most probable database problem. In Proceedings of the

BUDA.

[29] Venkatesan Guruswami. 2004. Inapproximability results for set splitting and SatisfiabilityProblems with no mixed

clauses. Algorithmica 38, 3 (1 Mar 2004), 451–469.

[30] S. Khanna, M. Sudan, and L. Trevisan. 1997. Constraint satisfaction: The approximability of minimization problems.

In Proceedings of the 12th Annual IEEE Conference on Computational Complexity. 282–296.

[31] Benny Kimelfeld. 2012. A dichotomy in the complexity of deletion propagation with functional dependencies. In

Proceedings of the PODS. 191–202.

[32] Benny Kimelfeld, Ester Livshits, and Liat Peterfreund. 2017. Detecting ambiguity in prioritized database repairing. In

Proceedings of the ICDT. 17:1–17:20.

[33] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On approximating optimum repairs for functional dependency

violations. In Proceedings of the ICDT, Vol. 361. ACM, 53–62.

[34] Harold W. Kuhn. 1955. The hungarian method for the assignment problem. Naval Res. Logist. Quart. 2, 1–2 (Mar.

1955), 83–97.

[35] Ester Livshits, Ihab F. Ilyas, Benny Kimelfeld, and Sudeepa Roy. 2019. Principles of progress indicators for database

repairing. CoRR abs/1904.06492 (2019).

[36] Ester Livshits and Benny Kimelfeld. 2017. Counting and enumerating (preferred) database repairs. In Proceedings of

the PODS. 289–301.

[37] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. 2018. Computing optimal repairs for functional dependencies. In

Proceedings of the PODS. 225–237.

[38] Andrei Lopatenko and Leopoldo E. Bertossi. 2007. Complexity of consistent query answering in databases under

cardinality-based and incremental repair semantics. In Proceedings of the ICDT. 179–193.

[39] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean: Holistic data repairs with proba-

bilistic inference. Proc. Very Large Data Base 10, 11 (2017), 1190–1201.

[40] Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros Rekatsinas. 2019. A formal frame-

work for probabilistic unclean databases. In Proceedings of the ICDT. 6:1–6:18.

[41] Slawek Staworko, Jan Chomicki, and Jerzy Marcinkowski. 2012. Prioritized repairing and consistent query answering

in relational databases. Ann. Math. Artif. Intell. 64, 2–3 (2012), 209–246.

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

4:46 E. Livshits et al.

[42] Dan Suciu, Dan Olteanu, R. Christopher, and Christoph Koch. 2011. Probabilistic Databases (1st ed.). Morgan & Clay-

pool Publishers.

[43] Ingo Wegener and R. Pruim. 2005. Complexity Theory: Exploring the Limits of Efficient Algorithms. Springer-Verlag,

Berlin.

Received November 2018; revised May 2019; accepted August 2019

ACM Transactions on Database Systems, Vol. 45, No. 1, Article 4. Publication date: February 2020.

