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ABSTRACT. We study the problem of space-efficient polynomial-time algorithms for directed st-
connectivity (STCON). Given a directed graph G, and a pair of vertices s, t, the STCON problem is to
decide if there exists a path from s to t in G. For general graphs, the best polynomial-time algorithm
for STCON uses space that is only slightly sublinear. However, for special classes of directed graphs,
polynomial-time poly-logarithmic-space algorithms are known for STCON. In this paper, we con-
tinue this thread of research and study a class of graphs called unique-path graphs with respect to source
s, where there is at most one simple path from s to any vertex in the graph. For these graphs, we
give a polynomial-time algorithm that uses Õ(nε) space for any constant ε ∈ (0, 1]. We also give a
polynomial-time, Õ(nε)-space algorithm to recognize unique-path graphs. Unique-path graphs are
related to configuration graphs of unambiguous log-space computations, but they can have some
directed cycles. Our results may be viewed along the continuum of sublinear-space polynomial-
time algorithms for STCON in different classes of directed graphs - from slightly sublinear-space
algorithms for general graphs to O(log n) space algorithms for trees.

1 Introduction

We study the directed st-connectivity (STCON) problem, where given a directed graph G, a

source vertex s and a terminal vertex t, we are interested in finding whether there is a path

from s to t in G. The STCON problem can be solved in polynomial time using standard

search algorithms (for eg. Depth First Search (DFS) or Breadth First Search (BFS)). These

algorithms run in O(m + n) time and use O(n log n) space on a graph with n vertices and

m edges. Improving the space complexity of STCON is a well-studied and fundamental

problem. The best known deterministic upper bound is given by Savitch’s theorem [18],

which solves STCON in O(log2 n) space. On the other hand, STCON is known to be NL-

complete [13]; i.e. giving an O(log n) space algorithm will imply L = NL. A comprehensive

survey on the complexity of STCON can be found in [19].

An interesting related question is the time-space trade-off involved in solving STCON

[8]. Savitch’s theorem uses O(log2 n) space, but takes super-polynomial (nO(log n)) time. DFS

or BFS takes linear time but its standard implementation requires O(n log n) space. The only

algorithm known till date that breaks the linear space barrier but takes polynomial time

is due to Barnes et al [6]. This algorithm uses n/2Θ(
√

log n) space to solve STCON in any

directed graph.
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2 STCON IN DIRECTED UNIQUE-PATH GRAPHS

On the other hand, the space complexity of the undirected counterpart of STCON,

namely USTCON, has been recently resolved by Reingold [15], who showed that USTCON

∈ L. USTCON can also be solved in randomized O(log n) space and O(mn) time using

random walks [1].

STCON has been studied in more restricted models of computation than the Turing

machine model. For example in the JAG (Jumping Automaton for Graphs) model proposed by

Cook and Rackoff, it has been shown that STCON has a lower bound of Ω(log2 n/ log log n)
on space complexity [10]. The same lower bound has also been shown by Berman and

Simon [7] for the Randomized JAG model. Poon further defined a stronger Node Named

JAG (NNJAG) model [14] and showed a time-space lower bound of T = 2
Ω(

log2(n log n/S)
log log n ) ×

√

nS/ log n on both the JAG and the NNJAG model [12] (where T denotes the time and

S denotes the space), underscoring the difficulty in designing polynomial-time sublinear-

space algorithms for STCON.

One important complexity class in the study of STCON and reachability problems is

Unambiguous Log-Space (UL or USPACE(log n)) [5]. This is a subclass of NL and character-

izes the class of problems accepted by logarithmic-space-bounded non-deterministic Tur-

ing Machines with at most one accepting computation path for each input. Though this

appears to be a strong restriction on the computation power of non-deterministic log-space

machines, UL/poly has been shown to be identical to NL/poly in [17]. Further subclasses of

UL with stronger requirements in terms of uniqueness of the computation path between two

configurations have been defined [9]. The complexity class Reach Unambiguous Log-Space

(RUSPACE(log n)) requires any two configurations reachable from the start configuration

to have a unique computation path in between them and in Strong Unambiguous Log-Space

(StUSPACE(log n)) any two configurations should have at most one path between them.

Clearly StUSPACE(log n) ⊆ RUSPACE(log n) ⊆ UL. In RUSPACE(log n) the set of vertices

reachable from the source vertex forms a tree whereas in StUSPACE(log n) the set of vertices

reachable from any vertex forms a tree. Configuration graphs for StUSPACE(log n) have also

been described as Mangroves in [4].

Though both the space complexity and the time-space tradeoff for STCON have not

been resolved till date for general directed graphs, these problems have been studied ex-

tensively on interesting subclasses of directed graphs. Given an oracle to access the set

of incoming edges and outgoing edges for a node in the graph, the STCON problem can

be easily solved in polynomial time using O(log n) space on a tree. Allender et al have

given a polynomial-time O(log2 n/ log log n) space algorithm to solve the STCON problem

on StUSPACE(log n) that also works for RUSPACE(log n) [4]. On planar DAGs with single

source STCON has been shown to be solvable using O(log n) space [3]. But none of these

graph families allow the presence of cycles. A recent survey of Allender [2] highlights the

results on the complexity of reachability in UL and its subclasses and on other special sub-

classes of directed graphs. Also Reingold’s technique has been generalized in [16] to solve

STCON in O(log n) space for regular directed graphs, where there is a value d such that the

in-degrees and out-degrees of all vertices are d.

In this paper we define a subclass of directed graphs that we call unique-path graphs

with respect to source vertex s. These graphs are defined by the existence of at most one
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simple path from s to any vertex in the graph. We will show later that this class of graphs is

characterized by the absence of forward or cross edges with respect to any DFS-tree rooted

at a vertex reachable from the source vertex. But some back edges may be present, i.e., we

allow the presence of some cycles in these graphs.

Configuration graphs for UL and its subclasses are closely related to unique-path graphs.

Unique-path graphs strictly contain trees and configuration graphs for StUSPACE(log n)

and RUSPACE(log n), since we allow some cycles. But, a configuration graph for UL is not

necessarily a unique-path graph, and vice-versa. Figure 1 shows examples of unique-path

graphs and configuration graphs of different subclasses of UL.

s

(a) UL (b) RUSPACE(log n) (d) Unique Path Graph(c) Mangrove

tttt

s s s

Figure 1: Examples of unique-path graphs and configuration graphs of UL and its subclasses

Our Results. As noted above, upper bounds on the space complexity of polynomial-

time algorithms for STCON ranges from O(log n) (on trees), O(log2 n/ log log n) (on man-

groves) to n/2Θ(
√

log n) (on general directed graphs). In this paper, we show that for any

ε ∈ (0, 1], the STCON problem can be solved in unique-path graphs in nO( 1
ε
) time using

Õ( nε

ε
) space §; this gives a polynomial time algorithm that uses Õ(nε) space for any constant

ε. We also show that we can recognize unique-path graphs in Õ( nε

ε
) space and nO( 1

ε
) time.

Our algorithm uses a sublinear-space implementation of DFS in unique-path graphs.

The standard implementation of DFS uses linear space for two purposes: (i) to maintain a

stack for backtracking from a vertex v after exploring all vertices reachable from it, and (ii)

to keep track of all vertices already visited and avoid rediscovering them. We show that,

in unique-path graphs, these purposes can be served by maintaining a sublinear-space data

structure which we call landmark vertices. We first give an Õ(
√

n)-space polynomial-time

algorithm for STCON in unique-path graphs. Extending our techniques further, we obtain

an algorithm which improves the space requirement to Õ( nε

ε
).

Organization. The rest of the paper is organized as follows. In Section 2 we define a

unique-path graph and discuss some useful properties of unique-path graphs. In Section 3

we give an Õ( nε

ε
)-space nO( 1

ε
)-time algorithm for any ε ∈ (0, 1] to solve STCON in unique-

path graphs. In Section 4 we show how to decide if an input directed graph is a unique-path

graph in Õ( nε

ε
) space and nO( 1

ε
) time. Section 5 contains conclusions and some directions for

future work.

§Õ( f (n)) denotes O( f (n) logk n), for some constant k.
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2 Preliminaries

Given a directed graph G, we will use V(G) and E(G) to denote the set of vertices and

edges, respectively, in G. We assume that there are no self loops or parallel edges in the

graph. A path where no intermediate vertices is repeated is called a simple path; a simple

cycle is defined similarly. Two simple paths p1, p2 are called distinct if they differ in at least

one edge. Next we define a unique-path graph.

DEFINITION 1. A directed graph G is a unique-path graph with respect to a source vertex s

if there is at most one simple path from s to any vertex v ∈ V(G).

w

(b) (c)(a)

v

u

u

v

sss

Figure 2: Examples of unique-path graphs ((a)) and non-unique-path graphs ((b) and (c))

It is easy to see that a directed graph G is a unique-path graph with source vertex s iff

there is at most one simple path between any two distinct vertices u, v ∈ V(G), where both

u and v are reachable from s. If a directed graph is not a unique-path graph, we call it a non-

unique-path graph. Examples of unique-path and non-unique-path graphs are shown in Fig-

ure 2. The graph in Figure 2(a) is a unique-path graph with source vertex s, but the graphs in

Figure 2(b) and (c) are non-unique-path graphs - in both cases there are two distinct simple

paths from s to u. The definition of unique-path graphs does not put any restriction on the

vertices which are not reachable from the source vertex s; they can have arbitrary number

of simple paths between them. Even there can be multiple simple paths from a vertex u to

a vertex v where v is reachable from s but u is not. Also note that while there is at most one

simple path between any pair of distinct vertices reachable from s, a vertex reachable from s

(such as w in Figure 2(a)) can lie on many different simple cycles.

For any vertex x in a graph G, we denote by N−(x) (resp. N+(x)) the set of vertices that

have an out-going edge to (in-coming edge from) x in G. We assume that the input graph

G is represented in an adjacency-list format, where for each vertex x ∈ V(G), N+(x) and

N−(x) are specified as lists. Given u, v ∈ N+(x) (or N−(x)) u is called a successor of v if u

immediately follows v in the list. We assume access to the incoming and the outgoing edges

of a node v and therefore the neighbors of v via queries to an oracle that answers as follows:

given vertices v and w, the oracle can answer if w ∈ N+(v) (or in N−(v)), i.e., we can check

if (v, w) (or (w, v)) ∈ E(G). Also we can query the oracle to return the successor (if any) of

w in N+(v) or in N−(v).
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2.1 Properties of Unique-Path Graphs

The algorithm we present to solve STCON in unique-path graphs relies on depth first search

(DFS) from the source vertex s. We therefore begin by making a few observations about DFS

in unique-path graphs. DFS from a vertex v ∈ V(G) generates a tree called the DFS-tree with

v as the root of the tree. The edges used in the tree are called tree edges. Apart from tree edges,

DFS on general directed graphs yield three other types of edges: back edges, forward edges and

cross edges (see, for instance [11]). The parent of a vertex v is the vertex u ∈ N−(v) such that

(u, v) is a tree edge and will be denoted by π(v). Lemma 2 states a necessary and sufficient

condition for a directed graph G to be a unique-path graph with respect to a vertex s and

Lemma 3 describes the structure of back edges in a unique-path graph. The proofs are easy

and are omitted due to space constraint.

LEMMA 2. A directed graph G is a unique-path graph with respect to s ∈ V(G) iff DFS
invoked from any vertex reachable from s does not produce any forward or cross edges.

For a back edge (u, v) in a DFS-tree, let SPAN(u, v) denote the set of vertices on the path in

the DFS-tree from v to u including v and u.

LEMMA 3. Let G be a unique-path graph. Let (u, v), (x, y) ∈ E(G) be back edges in the DFS-
tree with w as the root, where w is reachable from s. Then |SPAN(u, v) ∩ SPAN(x, y)| ≤ 1.

3 Algorithm for STCON in Unique-path Graphs

We assume that G is a directed unique-path graph with respect to source s in this section. We

will solve STCON in unique-path graphs by implementing DFS from s in polynomial time

using O(nε) space. A typical implementation of DFS relies on remembering the set of ver-

tices that have already been visited (to avoid rediscovering previously visited vertices), and

remembering the current exploration path for backtracking from a vertex v after all vertices

reachable from v have been visited (using a stack). Both these tasks can be accomplished us-

ing linear space. We show that, for unique-path graphs, these steps can be implemented in

polynomial time using sublinear space by maintaining some sparse auxiliary information.

Our final aim is to design an O(nε) space polynomial-time algorithm to implement

STCON in unique-path graphs for a constant ε ∈ (0, 1] ¶. In Section 3.1 we give an O(
√

n)
space polynomial-time algorithm to present our techniques. In Section 3.2 we will use our

techniques recursively to get an O(nε)-space polynomial-time algorithm. We will assume

that the oracle takes one unit of time to answer any query, though we get a polynomial-time

algorithm as long as the time taken by the oracle is bounded by a polynomial. We will refer

to the last vertex discovered by the DFS with an unfinished DFS call as the current vertex,

and the path using the tree edges from s to the current vertex as the active path.

3.1 An O(
√

n)-Space Algorithm

We prove the following theorem in this section.

¶From now on, “O( f (n)) space” will refer to the space needed to store O( f (n)) words; the bit complexity
will be O( f (n) log n) = Õ( f (n)).
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Algorithm 1 An O(
√

n)-space, polynomial-time algorithm for STCON on a unique-path

graph G with source vertex s and terminal vertex t
1: CURRENT:

2: – Suppose the control of the DFS is at the current vertex x (initially x = s).

3: – Either DFS has backtracked to x from some vertex v ∈ N+(x), or x is a newly discov-

ered vertex.

4: if DFS has backtracked to x from v then

5: – Ask the oracle to return the successor of v in N+(x).

6: else {x is a newly discovered vertex}
7: – Ask the oracle to return the first vertex in N+(x).

8: end if

9: NEXT:

10: if the oracle returns that there are no more vertices in N+(x) then {either the DFS has

backtracked from the last child of x in N+(x) or N+(x) is empty)}
11: if x is same as the source vertex s then {the search from s is complete}
12: – Exit with the answer ‘there are no paths from s to t in G’.

13: end if

14: – Perform the backtrack step for x to reach u = π(x).

15: – Set x = u, pass the control to (new) x and jump to Step CURRENT.

16: else

17: – The oracle returns y as the next vertex in N+(x).

18: – Perform the discovery step for the edge (x, y).

19: if (x, y) is a back edge then {y has been visited before,}
20: – Ask the oracle to return the successor of y in N+(x) and jump to Step NEXT.

21: else {y is a newly discovered vertex}
22: if y is same as the terminal vertex t then

23: – Exit with the answer ‘there is a path from s to t in G’.

24: end if

25: – Set x = y, pass the control to (new) x and jump to Step CURRENT.

26: end if

27: end if

THEOREM 4. STCON is solvable in O(mn + m2
√

n) time with O(
√

n) space in unique-path
graphs.

Overview of the Algorithm Algorithm 1 describes how STCON in unique-path graphs can

be implemented in O(
√

n) space and polynomial time. It relies on a sublinear-space imple-

mentation of two key subroutines. The first subroutine is to backtrack from a vertex x, i.e., to

return the control to the parent π(x) once the DFS finishes at x. The second subroutine is

the discovery step for an edge (x, y), which is called from a current vertex x to determine if

an edge (x, y) being considered by the DFS is a back edge. Now in order to complete the

description of the algorithm, it suffices to describe how we implement the backtrack and the

discovery steps. Note that Algorithm 1 and later the procedures for the backtrack and the

discovery steps always start the search on G from a vertex reachable from s. Thus we only
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need the unique-path property of the vertices reachable from the source vertex s and do not

have any restriction on the rest. First we introduce the notion of L-bounded DFS, which is

used as a subroutine in the procedures for the backtrack and the discovery steps.

L-bounded DFS

DEFINITION 5. A DFS search is called L-bounded if it backtracks whenever the length of

the active path exceeds L.

For a unique-path graph, if we store the entire active path, the backtrack and the discov-

ery steps can be easily implemented. The next lemma follows from the above observation;

we omit the proof due to space constraint.

LEMMA 6. Given a unique-path graph G with respect to source s, a vertex v ∈ V(G) reach-
able from s and and an integer L, an L-bounded DFS from v can be implemented in O(L)
space and O(n + mL) time. Moreover, it visits every vertex within distance L from v, and
does not visit any vertex at distance greater than L from v.

We note that an O(
√

n) space, polynomial-time algorithm for STCON in unique-path

graphs can be obtained from the above lemma with the approach of [6]. But there is no

obvious way of improving the space complexity beyond O(
√

n) using this approach. We

present here another approach for solving STCON in unique-path graphs in O(
√

n) space.

This will be the starting point to obtain an algorithm that reduces the space requirement to

O(nε).

Next we describe the implementation of the backtrack and discovery steps. The main

idea in implementing these steps is maintaining landmark vertices which are a few evenly

spaced vertices on the active path from s to the current vertex x. The landmark vertices

will be denoted by zi, i = 0, 1, · · ·, where the landmark vertex zi is at distance i⌊√n⌋ from s

along the current active path (s = z0); i is called the index of the landmark vertex zi. We will

consider the current vertex x as an additional landmark vertex zp, where z0, z1, · · · , zp−1

is the the set of landmark vertices maintained along the active path to x. Since it is easy

to maintain the length of the active path from s to the current vertex x in Algorithm 1,

the landmark vertices can be maintained by a simple modification of the algorithm. The

space needed to maintain the landmark vertices is O(
√

n), because the number of landmark

vertices is O(
√

n). As in standard DFS, Algorithm 1 performs O(n) backtrack and O(m)
discovery steps; thus to implement the whole algorithm in O(

√
n) space and polynomial

time it suffices to show that the backtrack and the discovery steps can be implemented in

O(
√

n) space and polynomial time.

Backtrack Step

Let x be the current vertex and let v1, v2, ..., vq be the vertices in N−(x). Suppose vi = π(x)
in the DFS-tree. Since G is a unique-path graph with respect to source s, the unique simple

path from s to x is through the edge (vi, x). Recall that if z0, · · · , zp are the landmark vertices

then current vertex x = zp and zp−1 is the previous landmark vertex.
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Procedure 2 Procedure to implement the backtrack step from the current vertex x

1: – Let v1, v2, ..., vq be the vertices in N−(x).

2: for each vj ∈ N−(x) do

3: – Perform a
√

n-bounded DFS from zp−1 in the graph G − (vj, x).

4: if zp = x is not reached then

5: – Return vj as π(x).

6: end if

7: end for

LEMMA 7. In the graph G − (vi, x) the current vertex zp = x is not discovered by a
√

n-

bounded DFS from zp−1 iff vi is the parent of x in the original DFS-tree.

PROOF. (if) Assume vi = π(x) and there is a path from zp−1 to x in the graph G − (vi, x).

Then there are two distinct paths from zp−1 to x, one uses the tree edge (vi, x) and the other

does not. Thus there are two distinct paths from s to x - this contradicts that G is a unique-

path graph. (only if) Let vj ∈ N−(x) and vj 6= π(x). As the landmark vertices are placed
√

n

distance apart along the active path, by Lemma 6, x will be discovered by a
√

n-bounded

DFS from the last landmark vertex zp−1 in the graph G − (vj, x).

The number of
√

n-bounded DFS to implement the backtrack step from x is at most |N−(x)|.
From Lemma 6, each

√
n-bounded DFS takes time O(n + m

√
n). Hence all the backtrack

steps performed in G can be implemented in O(mn + m2
√

n) time and O(
√

n) space.

Discovery Step

The goal of the discovery step at a current vertex x is to check if a vertex y ∈ N+(x) has

already been visited by the DFS. By Lemma 3, a DFS from s in the unique-path graph G

cannot produce any forward or cross edges; hence this is equivalent to checking if the edge

(x, y) is a back edge.

Procedure 3 gives the implementation of the discovery step. If y is one of the landmark

vertices then clearly (x, y) is a back edge, i.e., Case 1 in Procedure 3 returns the correct

output. Otherwise let Z = Z(y) be the set of landmark vertices reachable from y by a
√

n-

bounded DFS. Consider any back edge (x, y) such that y lies between the landmark vertices

zj−1 and zj (j ≥ 1); then at least zj ∈ Z. Hence if Z is empty, we know that (x, y) is not a back

edge. Let zk ∈ Z be the landmark vertex with the highest index k in Z. Note that if (x, y) is

a back edge, then k ≥ 1. So the outputs of Case 2 and Case 3 are correct. But a
√

n-bounded

DFS from y can discover more than one landmark vertex, since there can be successive back

edges. The relation between zj and zk is described by the following lemma when (x, y) is a

back edge.

LEMMA 8. (a) If j < p − 1 or j = p, then zj is the landmark vertex with the highest index j

in Z. (b) If j = p − 1, then zp−1 or zp is the landmark vertex with the highest index j in Z.

PROOF. As distance of zj from y is ≤ √
n, by Lemma 6, zj will be discovered by a

√
n-

bounded DFS from y, i.e., zj ∈ Z. (a) If j = p, then zp has the highest index p in Z since zp is

the last landmark vertex. If j < p − 1, the distance between y and zℓ is >
√

n for any ℓ > j.
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Procedure 3 Procedure to implement the discovery step for the edge (x, y)

1: – Let z0 = s, z1, · · · , zp = x be the current set of landmark vertices.

2: if y ∈ {z0, · · · , zp−1} then {(Case 1): y is one of the landmark vertices}
3: – Return ‘(x, y) is a back edge’ (y 6= zp, since there are no self loops).

4: end if

5: – Perform a
√

n-bounded DFS from y and let Z be the set of landmark vertices reached

by this DFS.

6: if Z is empty then {(Case 2): no landmark vertex is reached}
7: – Return ‘y has not been visited’.

8: else

9: – Let zj ∈ Z be the landmark vertex with the highest index j.

10: if j = 0 then {(Case 3): Z = {z0(= s)}}
11: –Return ‘y has not been visited’.

12: else if (j < p) then {(Case 4)}
13: – Perform a second

√
n-bounded DFS from zj−1, and terminate the DFS as soon as

one of zj or y is discovered.

14: if y is discovered then

15: – Return ‘(x, y) is a back edge’.

16: else

17: – Return ‘y has not been visited’.

18: end if

19: else {(Case 5): zp(= x) is the landmark vertex zj with highest index j}
20: – Perform a 2

√
n-bounded DFS from zp−2 and terminate the DFS as soon as one of

x or y is discovered. (if p = j = 1, perform a
√

n-bounded DFS from z0).

21: if y is discovered then

22: – Return ‘(x, y) is a back edge’.

23: else

24: – Return ‘y has not been visited’.

25: end if

26: end if

27: end if

Hence by Lemma 6 the
√

n-bounded DFS from y cannot discover zℓ. (b) If j = p − 1, then

zp−1 ∈ Z, but depending on the distance of the current vertex zp = x from zp−1, zp may or

may not belong to Z.

The following lemma proves the correctness of Case 4; the correctness of Case 5 can be

proved similarly.

LEMMA 9. An edge (x, y) is a back edge iff we terminate with the discovery of vertex y by
a
√

n-bounded DFS from zj−1 (i.e. y is discovered before zj).

PROOF. (only if) Suppose (x, y) is a back edge. Thus y is an ancestor of x. A
√

n-bounded

DFS from y discovers exactly one landmark vertex that is a descendant of y since landmark

vertices are spaced
√

n apart. Since the highest-indexed landmark vertex discovered from
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y is zj, zj is a descendant of y and hence y is on the unique path from zj−1 to zj. Therefore

y will be discovered before zj by the
√

n-bounded DFS from zj−1. (if) Suppose y is a newly

discovered vertex. Then no landmark vertex is a descendant of y and the unique path from

zj−1 to y is through zj. So the
√

n-bounded DFS from zj−1 cannot discover y before zj−1.

Thus the discovery step involves at most two
√

n-bounded (or 2
√

n-bounded) DFS.

From Lemma 6, each discovery step takes time O(n + m
√

n). So all the discovery steps

in the graph G can be performed in time O(mn + m2
√

n) time and O(
√

n) space. This

completes the proof of Theorem 4.

3.2 Improving to O(nε) Space

Applying the ideas above recursively, we can improve the space bound to nε for any ε ∈
(0, 1] while still achieving a polynomial time bound. We will prove the following theorem

in this section.

THEOREM 10. For any ε ∈ (0, 1], STCON in unique-path graphs is solvable with O( nε

ε
)

space in nO( 1
ε
) time.

We first modify the definition of the landmark vertices. Now the landmark vertices

will be spaced n1−ε distance apart on the current search path, so that they can be stored

using O(nε) space. Note that the immediate problem in increasing the spacing of the land-

mark vertices is that, in both the backtrack and discovery steps, landmark vertices may not

be reachable by a nε-bounded DFS. So we need to apply the ideas of the previous section

recursively.

We define the procedure D-REACH(u, U, H, d), where H is a subgraph of the unique-

path graph G with source s‖, u ∈ V(H) and u is reachable from s, U ⊆ V(H), 1 ≤ d ≤
|V(H)| − 1. This procedure decides if there exists a vertex v ∈ U within distance d from

u in H. If such a v ∈ U exists, then the procedure returns the first such vertex v and ter-

minates; otherwise it outputs that no such vertex in U exists. A variant called D-REACH-

ALL(u, U, H, d) determines all vertices in U reachable in distance d from u. This variant

has the same time and space complexity as D-REACH. The STCON problem is same as

D-REACH(s, {t}, G, n − 1).

LEMMA 11. If |U| ≤ nε, the procedure D-REACH(u, U, H, nε), can be implemented in O(n +
mnε) time using O(nε) space.

PROOF. The set U, |U| ≤ nε, can be stored in O(nε) space. Since u is reachable from

s, D-REACH(u, U, H, nε) can be implemented like an L-bounded DFS by storing the entire

active path; thus the backtrack step takes O(1) time for each vertex. For each edge (x, y), the

discovery step is performed by checking (i) if y belongs to the active path (of ≤ nε length)

and (ii) if y is a new vertex, then whether it belongs to U, where |U| ≤ nε (and in that case

the procedure returns with output y). Clearly the discovery step can be performed in O(nε)

time. Hence O(n + mnε) time suffices to implement D-REACH(u, U, H, nε).

‖G1 is a subgraph of G2 if V(G1) ⊆ V(G2) and E(G1) ⊆ E(G2).
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Suppose we are at the current vertex x and z0 = s, z1, · · · , zp = x is the set of landmark

vertices stored at the top-most level of the recursion. In the backtrack step, similar to Pro-

cedure 2, for each u ∈ N−(x) we need to check if the landmark vertex zp−1 can reach the

current vertex zp = x in the graph G − (u, x). As the distance of x from zp−1 can be at most

n1−ε, for each u ∈ N−(x), we recursively call D-REACH(zp−1, {x}, G − (u, x), n1−ε). For the

entire graph G, we have to make at most m such calls. Similarly for each discovery step, we

have to call a n1−ε-bounded D-REACH-ALL procedures first, and then we may have to call

either a n1−ε-bounded or a 2n1−ε-bounded D-REACH procedure (depending on the cases in

Procedure 3). Using the same notations as in Section 3.1, these recursive procedures are:

(i) D-REACH-ALL(y, Zcur, G, n1−ε) (where Zcur is the current set of landmark vertices at the

top-most level), (ii) if zj is the highest indexed landmark vertex found, a second call is made

either to D-REACH(zj−1, {zj, y}, G, n1−ε) (in Case 4) or to D-REACH(zp−2, {zp, y}, G, 2n1−ε)
(in Case 5). Hence, there are at most 2m calls to n1−ε-bounded D-REACH procedures (in-

voked by the backtrack and discovery steps) and at most m calls to n1−ε-bounded or 2n1−ε-

bounded D-REACH procedures (invoked by the discovery step).

Let T(m, n, d) denote the running time of D-REACH(u, U, H, d) (|U| ≤ nε), when H has

at most n nodes and m edges. Note that, in each call to the D-REACH and D-REACH-ALL

procedures used by our algorithm, |U| ≤ nε (since U is a subset of the landmark vertices).

Hence we have the following recursion. T(m, n, n) ≤ 2mT(m, n, n1−ε) +m max(T(m, n, n1−ε),

T(m, n, 2n1−ε)) +O(m + n), i.e. T(m, n, n) ≤ 3mT(m, n, 2n1−ε) + O(m + n). As the base case

we have, T(m, n, nε) = O(n + mnε) = (m + n)O(1). The first two parameters in the recur-

rence relation are not changed at any step and they do not play active role in the solution of

the recurrence. The solution to this recurrence is (m + n)O(1+ 1
ε
) = nO( 1

ε
), which is a polyno-

mial when ε is a constant.

Next we analyze the increased space requirement due to these recursive calls. Note

that, at any point of time we have to remember the landmark vertices at all levels of the

recursion. But we can reuse the space allocated to landmark vertices in successive DFS calls

at the same recursion level. The recursion depth is at most 1
ε
. Hence we have to remember

at most O( nε

ε
) vertices. So the overall space complexity of this recursive algorithm is O( nε

ε
).

This proves Theorem 10.

4 Recognition of Unique-Path Graphs

We prove the following theorem in this section. But due to space constraint, we omit the

proof of the theorem.

THEOREM 12. Given a directed graph G and a vertex s ∈ V(G), there is an O( nε

ε
)-space,

nO( 1
ε
)-time algorithm to decide whether G is a unique-path graph with respect to source s.

5 Conclusions

An interesting open question is whether there are polynomial-time, polylog-space algo-

rithms for STCON in unique-path graphs. It would also be interesting to see if our ideas

can be extended to obtain an O(nε)-space polynomial-time algorithm for STCON in a more

general family of graphs.
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