
Tool for Translating Simulink Models into Input
Language of a Model Checker

Meenakshi B., Abhishek Bhatnagar, and Sudeepa Roy�

Honeywell Technology Solutions Lab
Bangalore 560076, India

Meenakshi.Balasubramanian@honeywell.com

Abstract. Model Based Development (MBD) using Mathworks tools
like Simulink, Stateflow etc. is being pursued in Honeywell for the devel-
opment of safety critical avionics software. Formal verification techniques
are well-known to identify design errors of safety critical systems reduc-
ing development cost and time. As of now, formal verification of Simulink
design models is being carried out manually resulting in excessive time
consumption during the design phase. We present a tool that automati-
cally translates certain Simulink models into input language of a suitable
model checker. Formal verification of safety critical avionics components
becomes faster and less error prone with this tool. Support is also pro-
vided for reverse translation of traces violating requirements (as given
by the model checker) into Simulink notation for playback.

1 Introduction

Model Based Development (MBD) is a concept of software development in which
models are developed as work products at every stage of the development life-
cycle. Models are concise and understandable abstractions that capture critical
decisions pertaining to a development task and have semantics derived from the
concepts and theories of a particular domain. Models supersede text and code as
the primary work products in MBD and most development activities are carried
out by processing models with as much automation as possible.

MBD is known to improve the quality of the product being developed. Formal
models of design are used for proving the design correct with respect to functional
requirements, identifying errors early in the life-cycle. Automatic methods for
generating code and test cases helps to reduce coding errors and save total
development time spent in coding and testing phases.

Formal verification techniques like theorem proving and model checking are
well-known to reduce defects in the design stage by checking if a design meets
its functional requirements [9]. Presence of formal models in MBD gives room
for analysis using formal verification. Both MBD and formal verification are
practices that put emphasis on detecting design errors (that have high leakage
rate) rather than implementation errors (that have low leakage rate).

� Presently at Google, Bangalore, India.

Z. Liu and J. He (Eds.): ICFEM 2006, LNCS 4260, pp. 606–620, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tool for Translating Simulink Models 607

DO-178B [1] standard produced by Radio Technical Commission for Aero-
nautics Inc. defines guidelines for development of avionics software and is the
accepted means of certifying all new avionics software. DO-178B is obsolete with
respect to MBD process but recognizes formal methods as a way to prevent and
eliminate requirements, design and code errors throughout the development life-
cycle. The benefit of formally verifying models at design stage is also validated
by its successful use in various industrial examples [9].

In spite of all the above advantages, formal verification has not been success-
fully integrated into many development processes. The main issues are related to
making it easy to use by the system engineers. Formal verification tools typically
do not support standard design modeling notations but have their own notations
related to the theories of the tool. The extra effort to learn the notations to use
these tools is usually not welcome due to the delays it causes in development
time. Consequently, there is a need to automate the formal verification process
as much as possible for use by system engineers.

One possible step towards automation is to make formal verification tools
available in notations that system engineers typically use. Mathworks tools like
Simulink [2], Stateflow [3] etc. are extensively used in Honeywell for avionics
software development. For system engineers to formally verify their design, it
would be ideal if these modeling tools can automatically link to suitable model
checking tools. We meet such a need in this paper by developing a translator
from Simulink to the model checker NuSMV [4]. NuSMV is an open source
symbolic model checker jointly developed by ITC-IRST, CMU, University of
Genova and University of Trento. The translator takes a Simulink model as
input and generates an equivalent NuSMV model.

The translator supports all the basic blocks that constitute a finite state subset
of Simulink, i.e., any Simulink model obtained by putting together these blocks
constitutes a finite state machine. The model generated by the translator can be
formally verified against temporal logic requirements using the NuSMV model
checker. We are working on providing support for specifying requirements by
using a template based tool along the lines of the specification pattern system
developed in [11]. These two tools put together would constitute a full-fledged
verification tool for Simulink models.

Some other tools have been developed for formally verifying Simulink models.
Commercial tools like SCADE design verifier [8], Embedded Validator [5] support
formal verification of Simulink models against safety properties and work with
their customized library of Simulink blocks, again mainly blocks from the discrete
library. These tools were not expressive enough to translate some of models
used in Honeywell, one such model involving an avionics triplex sensor voter is
presented in the paper.

Checkmate [6] is a research tool developed to translate Simulink models into
hybrid automata notation and verification is done using abstraction and cer-
tain semi-decision procedures involving reachability analysis of hybrid automata
which are not guaranteed to terminate. Since Checkmate can translate Simulink
models into hybrid automata, the translation also supports certain continuous

608 B. Meenakshi, A. Bhatnagar, and S. Roy

basic blocks of Simulink. Thus, even though a larger set of Simulink models
can be translated, fully automated verification of models is not possible as the
reachability analysis procedures of the considered class of hybrid automata are
not guaranteed to terminate.

Our algorithm works with standard Simulink notation and semantics and the
models are translated into NuSMV which is an open source verification tool
supporting the fully automatic technique of model checking. This achieves the
main goal of providing a fully automated formal verification support to system
engineers using MBD based on Simulink models.

2 Preliminaries

We briefly describe Simulink and NuSMV tools in this section.

2.1 Simulink

Simulink is a computer aided design tool widely used in the aerospace industry
to design, simulate and auto code software for avionics equipment [2]. A Simulink
model of a system is a hierarchical representation of the design of the system
using a set of blocks that are interconnected by lines. Each block represents an
elementary dynamic system that produces an output either continuously (con-
tinuous block) or at specific points in time (discrete block). The lines represent
connections of block inputs to block outputs. Simulink provides various libraries
of such blocks and in addition, some additional blocks can also be user-defined.
Interconnected blocks are used to build sub-systems which in turn are put to-
gether to form a system model.

Simulink, considered as a de-facto standard in control design, is proven to be
expressive enough to model many avionics systems and offers extensive simula-
tion capabilities for de-bugging the design model.

2.2 NuSMV Model Checker

NuSMV [4] is a symbolic model checker based on Binary Decision Diagrams
(BDDs) [7]. It allows for the description of systems as finite state machines,
both synchronous and asynchronous. Specifications regarding the system can
be given as Computation Tree Logic (CTL) and Linear Temporal Logic (LTL)
formulas. Model checking algorithms in NuSMV check if the system meets the
specifications using BDD-based and SAT-based model checking techniques and
are ideally suited for verifying hardware designs.

The data flow block diagram of a Simulink model resembles control flow like
that of hardware design even though Simulink models are finally implemented in
software. This is the main reason behind choosing NuSMV as the target model
checking tool for formally verifying Simulink diagrams apart from the fact that
NuSMV is an open source tool. Also, NuSMV being a symbolic model checker is
capable of handling systems with huge state space size. We illustrate this fact by

Tool for Translating Simulink Models 609

applying the translator algorithm on the Simulink model of an avionics triplex
sensor voter. The details are described in a subsequent section.

NuSMV input language. The input language of NuSMV is designed to allow for
specification of system models as finite state machines. The data types provided
by the language are Booleans, bounded integer sub-ranges, symbolic enumerated
types and bounded arrays of these basic data types.

Complex system models can be described by decomposing it into modules.
Each module defines a finite state machine and can be instantiated many times.
Modules can be composed either synchronously or asynchronously to get the full
system description. In synchronous computation, a single step in the composed
model corresponds to a single step in each of the modules. In asynchronous
computation, a single step in the composed model corresponds to a single step
performed by exactly one module.

3 The Translator Algorithm

We describe the translator algorithm from Simulink models into NuSMV model
checker in this section along with details about the execution semantics and
the reverse translation. Working of the algorithm along with its use in formal
verification of Simulink models will be illustrated in the next section with an
example from the avionics domain.

3.1 Description of the Algorithm

The translator algorithm takes the MDL file format (textual representation)
of the Simulink model as input and outputs its equivalent model in the input
notation of NuSMV as described in Section 2.2.

Each basic block in Simulink (in the libraries supported by the translator algo-
rithm) is translated into its equivalent module in NuSMV. For a given Simulink
model, the NuSMV model that is output by the translator varies with the type
of input ports of the Simulink model. Basic blocks of Simulink are generic, for
example, the basic block corresponding to addition can add two scalars or two
vector inputs, type matching and conversion are taken care of automatically.
However, this is not the case with NuSMV, the module that adds two scalar
inputs is different from the one that adds two vector inputs. Consequently, there
is one NuSMV module corresponding to a given basic block and input type in
Simulink.

A library of routines to generate NuSMV modules equivalent to basic blocks
in Simulink are written to be re-used while generating NuSMV models from
given Simulink models. The routines in this library respect the correspondence
between basic blocks and modules mentioned above. For example, consider the
standard relational operator block in Simulink given in Figure 1. Assume that
the first input (in1) to the block is a vector of length 2, the second input (in2) is

610 B. Meenakshi, A. Bhatnagar, and S. Roy

a scalar and the operation being checked for is ≤. The NuSMV module equivalent
to the relational operator basic block is given below:

MODULE relational operator 2(in1, in2)

VAR
out : array 0..1 of boolean;

ASSIGN
out[0] := in1[0] <= in2;
out[1] := in1[1] <= in2;

in1

in2
Relational operator

out

Fig. 1. Relational operator block in Simulink

The above module will be generated by a routine in the library to be re-used
whenever the relational operator block with two inputs (of types as above) is
being used in a model.

The translator algorithm is divided into the following steps:

1. Parsing the model: The model is read from its textual representation,
irrelevant information involving the graphics of the model (like color, font
size etc.) are discarded and information regarding blocks and subsystems,
input and output ports, variables, inter-connection of blocks etc. is extracted.

2. Computing input type of blocks and sub-systems: In this step, a walk
through the output of the graph structure extracted from step (1) is done
wherein the type of input of each block is computed depending upon the
output of preceding blocks.
(a) For each block of source library of Simulink, input types of all the con-

nected blocks is populated. Output type information for source block
can be calculated directly from Simulink model.

(b) If depending upon the input type, any decision regarding block output
type can be taken (For example, in the case of Add block, if one of
the inputs is a vector of n-dimension then output will be of n-dimension,
where n > 1, or when all input port types are of 1-dimension then output
will also be of type 1-dimension), then all the blocks further connected
to this block are populated with input port type.

Tool for Translating Simulink Models 611

(c) The above step is continued for all the blocks in the graph until a block
for which output type cannot be computed is reached. At this stage,
control is transferred to the parent of this block in the model and the
previous step and this one are repeated for the other connected blocks
from the output port of the parent. This is done iteratively till all the
blocks connected to one of the source blocks (in the first step above) are
exhausted.
Note that this step is guaranteed to terminate as the input model has a
fixed number of blocks.
If block is of type subsystem, then, blocks inside this sub-system are
populated as per step 2 above. Once output port is reached, all the
blocks connected to this output port of the subsystem are populated as
done in step 2(c).

3. Writing the final file: In the final step, routines from the library described
above are used to write the NuSMV model wherein each basic block is re-
placed by its equivalent modules(s). Here again, sub-systems are translated
first respecting the hierarchy in the model.

Notice that the translation preserves the structure (hierarchy of the blocks,
their names and interconnections) of the input Simulink model. The NuSMV
model output by the translator follows the same hierarchical structure as the
input Simulink model and variable names are also retained to be the same. Also,
there is one module in NuSMV model corresponding to each basic block in the
Simulink model. These features are important in MBD for answering traceability
related questions and also for the verification of requirements as some of them
might be specified by fully exploiting the structure in the model.

The above algorithm has been implemented and has been tested on some
examples to check for the translation preserving the model. We present a detailed
example involving the translation of Simulink model corresponding to an avionics
triplex sensor voter in the next section.

3.2 Simple Abstraction Feature

The size of the translated NuSMV model is an important factor to make it
amenable for verification. Many abstraction techniques are used to avoid the
famous state space explosion problem. The fact that NuSMV is a symbolic model
checker comes in useful here as such model checkers are well-known to handle
systems with large state space size.

We have provided a simple state abstraction feature to be able to model
check Simulink models that are too huge even for symbolic model checkers like
NuSMV. While running the above translation algorithm, the system engineer
has the option of bounding the ranges of certain/all variables that occur in
the model. If no ranges are specified, the translator assumes maximum range.
Otherwise, ranges of certain variables can be bounded by the system engineer and
are incorporated into the translated model. This will help in reducing the state
space size whenever required, while retaining the features required for verification
of requirements.

612 B. Meenakshi, A. Bhatnagar, and S. Roy

3.3 Execution Semantics

Some points are worth noting regarding the translator algorithm preserving the
behavior of the Simulink model. Semantics of systems modeled using Simulink
is presented through simulations, which are done by sampling the data in the
model. As mentioned above, Simulink models have both discrete and continuous
blocks. Sample time parameter talks about the rate at which the states of the
Simulink model are updated. The sample time is by definition, continuous for
continuous blocks and is explicitly specified by the user for discrete blocks.

The scope of the translator algorithm presented in this paper is restricted to
the discrete blocks of Simulink as the model checker NuSMV is capable of mod-
eling discrete finite state systems only. We assume that one sample time in the
Simulink model is equivalent to one execution step (modeled by a transition from
one state to another) in the NuSMV model. The NuSMV model is equivalent
to the given Simulink model as generated by the translator with respect to this
assumption. Also, as noted in the previous section, for a given Simulink model,
the NuSMV model generated by the translator varies with the type of input
ports. Given the above, the translator algorithm preserves the given Simulink
model as follows: at any point of execution, for every state of the Simulink model
(given by the values which all the variables in the model take), there is a corre-
sponding state in the NuSMV model wherein the variables take the same values.
Also, transitions between states that arise because of change of values of certain
variables in the Simulink model also result in corresponding transitions between
corresponding states in the NuSMV model.

3.4 Finite State Simulink Models

As mentioned in the previous section, the scope of the translator is restricted
to discrete Simulink models only, mainly due to the fact that the model checker
NuSMV is capable of modeling discrete systems only. Here again, the model
checker NuSMV is a finite state verification tool, that is, the class of models
that can be formally verified using NuSMV are finite state machines. Conse-
quently, the translator can support all the basic blocks of Simulink that, when
put together, form a finite state model of a system.

Basic blocks of Simulink are organised into libraries of those with similar
properties. In the translator algorithm, all the blocks of the signal routing, logic
and bit operations, math operations (discrete), sources, discontinuities and dis-
crete libraries are supported as of now with integer and Boolean data types for
variables. As we illustrate in a subsequent section, the translator algorithm is ex-
pressive enough to translate non-trivial avionics Simulink models that are built
using basic blocks from these libraries. Detailed list of the various blocks (listed
within the libraries they belong to) are given below.

– Signal routing library
• Demux and mux blocks
• Switch block

Tool for Translating Simulink Models 613

• Selector block
• Multi-port switch, index vector blocks
• Merge block

– Logic and bit operations library
• Relational block
• Logical block
• Interval test block
• Interval test dynamic block
• Compare to zero, compare to constant blocks

– Math operations library
• Sum, add, subtract and sum of elements blocks
• Product, divide and product of elements blocks
• Abs block
• Unary minus block
• Sign block
• Bias block
• Min-max block
• Gain block

– Sources library
• Ground block
• Constant block
• In port block
• Uniform Random Number
• Step
• Counter Free Running
• Counter Limited
• Read From File

– Discontinuities library
• Saturation block
• Saturation dynamic block
• Dead zone block
• Dead zone dynamic block
• Wrap to zero block
• Coulomb and vicious function block

– Discrete blocks library
• Unit delay and integer delay blocks

– Sinks blocks Library
• Out port Block

3.5 Reverse Translation

NuSMV (and many other model checking tools) take a system model and a
requirement as input and provide a yes/no answer depending on whether the
system satisfies the requirement or not respectively. In the latter case, a system
run violating the requirement is also output by the model checking tool as evi-
dence to the fact the system does not meet the requirement. This feature is very
useful in de-bugging the system design to meet the requirement.

614 B. Meenakshi, A. Bhatnagar, and S. Roy

In order to facilitate the Simulink system engineer to de-bug the model,
we provide a reverse translation routine that takes a system run produced by
NuSMV (as counter example) as input and translates it back into a textual
notation that a Simulink designer can understand.

Since the translation algorithm preserves the structure of the input model, the
counter example output by NuSMV reveals the structure fully in its description.
Consequently, the reverse translation routine is a simple scripting program that
re-writes the example in a notation that a Simulink designer can understand and
simulate. Simulation of a violating run helps in de-bugging the design.

4 Sensor Voter Example

We describe an example involving a Simulink model used in digital flight control,
namely that of an avionics triples sensor voter. This model was automatically
translated into NuSMV by the algorithm and various computational and fault-
handling requirements of the model were verified using NuSMV.

4.1 Triplex Sensor Voter

Almost all digital flight control systems utilize redundant hardware to meet high
reliability requirements. Use of redundant hardware poses two problems: distin-
guishing between operational and failed units and computing the ”mean” value
of the various units for use by other components. A key part of redundant sys-
tems are redundant sensors and algorithms that focus on managing redundant
sensors to provide a high integrity measurement for use by down-stream con-
trol calculations. We consider a voter algorithm that manages three redundant
sensors in this paper. This class of algorithms is applicable to a variety of sen-
sors used in modern avionics, including air data sensors, surface position sensors
etc. The voter model has been translated by hand into the model checking tool
SMV and many requirements were verified [10]. We now describe the sensor
voter model and our work related to its formal verification using the translation
algorithm.

Sensor voter operation. Simulink model corresponding to the sensor voter is
described in Figure 2. The voter takes input from three sensors and produces
a single reliable sensor output. Each sensor produces a measured data value
and a self-check bit indicating whether or not the sensor considers itself to be
operational.

The operation of the voter algorithm is described in the steps below:

– All valid sensor data are combined to produce output.
– If three sensors are available, a weighted average is used in which an outlying

sensor value is given less weight than those that are in closer agreement.
– If only two sensors are available, a simple average is used.
– If only one sensor is available, it becomes the output.

Tool for Translating Simulink Models 615

Fig. 2. Simulink model of avionics triplex sensor voter

616 B. Meenakshi, A. Bhatnagar, and S. Roy

A faulty sensor value is not used in failure comparisons or in the production
of the output signal. The following are the mechanisms by which a faulty sensor
can be detected and eliminated:

– Any sensor input whose own self-check bit is false is not used.
– Next, all the sensor values are compared two at a time. If difference exceeds

threshold, magnitude error is set. If magnitude error persists longer than mag-
nitude threshold, persistent miscompare is set. (threshold, magnitude error and
persistent miscompare are variables in the model).

– If sensors 1 and 2 have persistent miscompare and so do sensors 2 and 3,
sensor 2 is flagged as persistent sensor error and is not used.

– If only two sensors are valid and then miscompare, output depends on the
self-check bit.

Requirements of the sensor voter were either relating to the value of the
output signal computed by the voter or they were fault handling requirements
that talk about mechanisms to detect and isolate faulty sensors. We translated
the requirements manually into CTL formulas for verification using NuSMV.

Sensor voter modeling. In order to perform formal verification, it is just not
sufficient to translate the sensor voter model into NuSMV. We need to model
the environment in which the voter is used so that faults can be injected into
the model externally. The environment was modeled by using a world block that
acts as an abstraction of all the components that provide inputs for the sensors
to measure. There are also three blocks corresponding to the sensors that model
the physical sensors that generate the measured signal. The sensor blocks were
used to inject faults to test the ability of the voter to identify them. These blocks
were added to the original Simulink model to create a model amenable to formal
verification.

Formal verification. The Simulink model of sensor voter (as given in Figure 2)
was modified by adding the world and sensor blocks as described above. The
new model constitutes what we call a fault model where different values can be
injected to perform ”what if” analysis to check if the requirements are met.

The translator tool was invoked to translate the fault model of sensor voter
into NuSMV. Since the sensor voter model is big, the NuSMV code of the model
as generated by the translator is not fully presented. Figure 3 gives a snapshot
of part of the NuSMV model containing the declarations of the modules corre-
sponding to the sub-systems and the blocks in the outermost level of the sensor
voter model.

We now present the results of verifying two requirements related to the sensor
voter. The requirements were given as CTL formulas to NuSMV.

1. The first property relates to the requirement that detection and elimination
of a faulty sensor is final, i.e. once a sensor is detected and eliminated as
being faulty, it is never available as an active sensor again. This requirement

Tool for Translating Simulink Models 617

Fig. 3. Main module of the NuSMV code of triplex sensor voter

618 B. Meenakshi, A. Bhatnagar, and S. Roy

is specified by using the following CTL formula which specifies that there is
no execution path where the number of valid sensors increases.
AG (

(voting3signals.OutputValid = 0 ->
!EF voting3signals.OutputValid = 1)
& (voting3signals.OutputValid = 1 ->
!EF voting3signals.OutputValid = 2)
& (voting3signals.OutputValid = 2 ->
!EF voting3signals.OutputValid = 3))
NuSMV reported this specification to be true. We first ran verification with
unbounded ranges and since NuSMV model checker took about a week to
produce the results, we tried verification algorithm by bounding the range
of one variable, namely, unit delay, to vary from -30 to 30. With this option,
the state space size reduced drastically and verification of the model with
respect to the above property completed with the same result within a few
seconds. This acts as a good illustration of the static abstraction feature
explained earlier.

2. The second requirement relates to fault handling requirements of the sensor
voter. If the number of valid sensors is 2 and the voter output is valid and
the second sensor becomes faulty then in the future, the number of valid
sensors is 1 and the voter output is still valid.
AG (

((voting3signals. Goto1 1 = 2
& voting3signals.OutputValid) & fault2) ->
AF (voting3signals. Goto1 1 = 1
& voting3signals.OutputValid))
NuSMV reported this property to be false and gave a violating run. The
property turned out to be false due to a problem with our fault model (and
not the voter model). We had modeled the sensors in such a way that a
faulty sensor will never exhibit any faulty behavior in terms of the way in
which the values are measured.

5 Model Based Formal Analysis

Engineers traditionally perform well-established but, informal analysis tech-
niques like Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis
(FMEA) for checking for safety requirements of their system. These techniques
are well established and are used extensively during the design of safety critical
systems. Despite this, most of the techniques are highly subjective and depen-
dent on the skill of the practitioner as they are based on informal system models
that are derived in an ad hoc fashion. This results is excessive consumption of
resources and time.

Due to these reasons, there is an increasing shift towards using MBD tech-
niques for analysis of the design of safety-critical systems. In this approach, var-
ious development activities including design and simulation, verification, testing

Tool for Translating Simulink Models 619

and code generation are based on a formal model of the system. The pres-
ence of formal models makes the development process amenable to using for-
mal verification techniques like model checking. However, there are certain gaps
to be filled for model checking techniques to be directly used by system
engineers.

We already discussed one of the gaps in the introduction, namely that of
the model checking notations not being easy-to-use by system engineers. The
translator algorithm presented in this paper fills this gap. Few more questions
need to be answered to fully integrate techniques like model checking with MBD.
The first among them is to be able to formalize a fault model of the system under
test. Fault model captures the various ways in which the components of the
system can malfunction. This information is provided by modeling the entities
that the system interacts with so that faults can be externally introduced into
the system without altering the system model. For example, in the verification of
sensor voter presented in the previous section, fault model comprises of abstract
models of the sensors and the world block gives data to the sensors. This step
has to be done by the system engineers themselves, manually.

The second gap comes from the requirements side. Functional requirements
which ensure safe behavior of the system are usually specified in text docu-
ment along with other requirements. The safety properties must be expressed
in some formal notation to support automated analysis. There are several for-
mal specification languages like CTL, LTL, finite state machines etc. that are
supported by many model checkers. We are working on automating this step
by exploiting the work done in [11] where the authors provide a repository of
commonly occurring specification patterns in the specification of concurrent,
reactive systems. There is a mapping from these specification patterns to a
number of formalisms that are supported by tools for formal analysis. LTL
and CTL languages that are supported by NuSMV are also provided amongst
the formalisms.

A template-based description of these specification patterns is being developed
with facilities to include model specific values to the specification templates.
These will be translated into equivalent CTL/LTL formulas so that they can
be fed into the model checker NuSMV for verification automatically. This step
would fill all the gaps that exist for fully automated use of model checking
techniques by Simulink system engineers.

6 Conclusions

We have presented a translator algorithm that translates a subset of Simulink
into input language of the model checker NuSMV. The subset of Simulink
blocks supported by the translator is expressive enough to translate many in-
teresting classes of avionics models like the avionics triplex sensor voter pre-
sented in this paper. The tool aids in automating formal verification of Simulink
models and will be of valuable use in model based formal safety analysis of
systems.

620 B. Meenakshi, A. Bhatnagar, and S. Roy

References

1. DO-178B guidelines. Available from: http://www.rtca.org/.
2. Simulink web page: http://www.mathworks.com/products/simulink/.
3. Stateflow web page: http://www.mathworks.com/products/stateflow/.
4. NuSMV web page: http://nusmv.irst.itc.it/.
5. Embedded Validator web page:

http://www.dspaceinc.com/ww/en/inc/home/
products/sw/pcgs/automatic model validation.cfm.

6. Checkmate web page: http://www.ece.cmu.edu/∼webk/checkmate/.
7. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, 1986.
8. Jean-Louis Camus and Bernard Dion. Efficient development of airborne software

with scade-suite. Technical report, Esterel Technologies, 2003.
9. Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and

future directions. ACM Computing Surveys, 28(4):626–643, 1996.
10. Samar Dajani-Brown, Darren Cofer, Gary Hartman, and Steve Pratt. Formal

modeling and analysis of an avionics triplex sensor voter. In Proc.SPIN, pages
34–48. Springer, 2003.

11. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property spec-
ification patterns for finite-state verification. In Mark Ardis, editor, Proc. 2nd
Workshop on Formal Methods in Software Practice (FMSP-98), pages 7–15, New
York, 1998. ACM Press.

	Introduction
	Preliminaries
	Simulink
	NuSMV Model Checker

	The Translator Algorithm
	Description of the Algorithm
	Simple Abstraction Feature
	Execution Semantics
	Finite State Simulink Models
	Reverse Translation

	Sensor Voter Example
	Triplex Sensor Voter

	Model Based Formal Analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

