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Abstract

A simple algorithm for tracking the pose of articulated
objects in real-time range image sequences is proposed.
This method models each target segment as a planar patch
bounded by the convex hull of two circles, and utilizes both
edge-like and region-like information in matching the model
to the target. It uses hard constraints for joint attachment,
and is designed to be robust to occlusions and missing data.
Experimental results are presented in which a human arm
is successfully tracked over 26 frames of real, video-rate
range imagery.

1. Introduction

Tracking the position and pose of articulated objects
in image sequences is an important problem in computer
vision with many potential applications. Numerous algo-
rithms have been developed for doing so in the usual domain
of color or intensity images. Among these, some use only
sparse feature points or edges, while others use dense image
data. In the less common domain of range images, however,
although much attention has been paid to estimating and
tracking rigid-body motion, less has been done specifically
regarding articulated motion. This may be because tracking
articulated motions in range images is much more inter-
esting when large quantities of range data are available,
but obtaining such data quickly and accurately has typically
been at least as difficult as estimating object motion directly
from color or intensity images.

With the advent of real-time stereo hardware [9, 19, 12],
however, there are now sources of fairly accurate range
data that is dense in both space and time. Since range
data provides precisely that information which is missing
from 2D color or intensity data, incorporating range data as
well as color/intensity data could be extremely helpful in
attacking the articulated motion estimation problem.

This work begins to explore the extent of this helpfulness

by looking at the problem of tracking an articulated object
with known structure and initial configuration solely via a
range image sequence, without the use of color or intensity
information. The contribution of this work is the intro-
duction of a simple yet novel model to represent the visible
surface of the target, in which each articulated segment is
described as a planar patch bounded by the convex hull
of two circles, and the application of this model to high-
resolution, video-rate range imagery.

Section 2 reviews some previous work in target tracking,
and motivates the current work. Section 3 explains the
proposed method. Section 4 presents some encouraging
experimental results on a range image sequence of a real
human arm. Section 5 suggests directions for future work.

2. Background

The majority of work on 3D object tracking or motion
estimation has been directed at the use of intensity or color
images. For example, Aggarwal and Nandhakumar [2]
and Huang and Netravali [8] give surveys of several such
methods for estimating rigid-body motion, Aggarwal et al.
[1] review work for estimating articulated motion, and Rehg
[14] and Bregler [6] further demonstrate two qualitatively
different approaches to tracking articulated motion. These
methods implicitly or explicitly calculate from the image
data the depth/range of some or all of the target’s image
pixels in determining its 3D pose. If range information
is available, however, one would like to use it directly,
rather than recalculating it from intensity or color infor-
mation. Some methods for color or intensity in fact do not
depend much on the interpretation of pixel attributes, and
could perhaps be modified so that range could be substituted
instead, but this would not take advantage of the geometric
meaning of range information.

Sabata and Aggarwal [15] and Huang and Netravali [8]
review some motion estimation methods explicitly designed
to use range data. Most of these methods are based on
thea priori knowledge of 3D point correspondences, using



them to solve for an affine or rigid-body transformation
mapping one frame into the next [13, 4]. Others do not
require that the set of point correspondences be known,
but do require that it exist and be one-to-one [13, 3].
This requirement is reasonable when range information is
available at a sparse set of points, but is less appropriate for
spatially dense range images.

Matching surface patches instead of points eliminates the
need for pointwise correspondences, and can furthermore
reduce the sensitivity of the motion estimation to occlusions
and measurement noise. Methods have been developed to
segment dense range data into surface patches, to find corre-
spondences among them, and to use these correspondences
to estimate 3D rigid body motion [10, 17, 16]. The extracted
patches are generally restricted to be planar or quadric,
however, and in any case the segmentation is performed
according to surface curvature and thus could be highly
sensitive to surface warping (e.g. as occurs in clothing).
Vemuri and Skofteland [18] estimate a single surface from
sparse range data, and Horn and Harris [7] essentially treat
an entire dense range image as one surface patch, so they do
not have a problem with patch correspondence. However,
for bumpy or convoluted surfaces, their methods of patch
alignment (and thus motion estimation) are susceptible to
local minima and may not converge correctly for large inter-
frame motions.

Whether they use point correspondences or surface patch
correspondences, all the aforementioned methods for use on
range data are alike in that they assume a single rigid body
motion, such as that which occurs when the camera moves
within a static environment. One obvious way to apply
these methods to tracking articulated motion would be first
to partition the initial input frame into rigid subsets using
some separate segmentation algorithm, and thereafter to use
rigid-body methods to track each of those subparts indepen-
dently. For methods using range data with known point-
wise correspondences, this approach would suffice because
given a correct initial segmentation, thea priori correspon-
dences would track the segmentation perfectly.

However, rigid-body methods that are not provided with
a priori correspondences are generally not easily adapted
for estimating or tracking articulated motions. The afore-
mentioned approach of initially segmenting then indepen-
dently tracking subparts would usually not be effective,
because an initially correct segmentation would still need
to be maintained over time. Without maintenance, small
errors in segmentation would lead to less accurate local-
ization, and small errors in localization could lead to less
accurate segmentation; independently tracking connected
parts would ignore the very useful information provided by
their interdependencies.

Furthermore, although some work on automatic model
construction from range images [5] or otherwise [11]

is explicitly designed for articulated objects, as they
completely recalculate the articulation structure of the target
with each image frame, the efficiency of such methods
for tracking objects with constant and known articulation
structure would be questionable.

This paper describes a simple algorithm for tracking the
pose of articulated objects that attempts to address each
of these issues. The proposed method directly uses the
geometric information in range data. It does not require
the predetermination of features or their correspondences,
instead simultaneously performing target segmentation and
localization. It is especially designed for articulated targets,
and explicitly incorporates the joint attachment constraints
to help track the positions and boundaries of the target’s
subparts, leading to greater robustness.

3. Algorithm

The proposed method estimates the sequence of poses
of a target from a range image sequence1 thereof, given a
model of the target as well as its initial conditions. The
range image sequence should be dense in both space and
time, for example on the order of digital video camera reso-
lutions and frame rates. The proposed method tracks the
target by incrementally estimating its pose at each frame;
that is, it does sequential state estimation.

State estimation can be thought of as trying to find a set
of parameters for a given model that best accounts for a set
of observations without exceeding too far the constraints
of what is expected to be possible. Formally, it is sought
to find the most probable sequence of states given a set of
observations and a set of expectations; that is, to find the
sequence of states with the maximuma posteriori prob-
ability. Without accurate probablistic models on which
to base them, however, such statistical calculations are of
questionable usefulness, and much simpler heuristics can
often suffice.

Informally, the intuition of state estimation is to find
the parameters that maximize the agreement between the
model and the observations. However, because real image
data is subject to noise and occlusions, the observations
will generally have some erroneous or missing elements.
In order to alleviate the effects of these imperfections on
the results, this idea of maximizing the agreement is refined
by also consideringa priori expectations, such as smooth
motions or bounded accelerations or velocities. Thus the
idea is generalized to minimizing some residual, where the
residual takes into account the agreement or correlation
of the proposed state with the observations, as well as
some measure of the unexpectedness or innovation of the

1Throughout this paper, the terms “range” and “depth” will be used
interchangeably.



proposed state based on past history. That is, we take

�̂f = arggmin
�

residual(�; �̂ (f�1); If )

where�̂f is the estimated state for the current framef ,
�̂ (f�1) is the accumulated history of past estimated states,
If is frame f of the observed image sequence, and the
approximate minimization is described in Section 3.4; and
where

residual(�; �̂ (f�1); If ) =

innovation(�; �̂ (f�1))� correlation(�; If )

expresses the decomposition of the residual into depen-
dencies on the past and on the present.

The remainder of this section describes the computation
and optimization of this residual in more detail. The model
of the visible surface of the target is a set of planar patches,
each bounded by the convex hull of two circles. The corre-
lation between model and observation is expressed in terms
of the correspondence of individual pixels to each articu-
lated subpart. The innovation of a state is based on the
hypothesized changes in the subparts’ sizes. The mini-
mization of the residual function is simplified by instead
minimizing a lower-dimensional projection of the residual
function.

3.1. Model

The target is modeled by a set of connected planar
patches, each in the shape of the convex hull of two circles.
The radius and 3D location of each of those circles are
variable parameters which the proposed method estimates,
but the connectivity of the patches is fixed and must be
provided by the user. This articulation model can be
expressed as a graph, in which edges correspond to body
segments and non-leaf nodes correspond to joints.

The visible surface of each articulated subpart of the
target is modeled by a single patch, as shown in Figure 1.
Each surface patchSk = S(ij) is defined by the two nodes
ni;nj at its ends; each node can be associated with one or
more patches (those associated with more than one corre-
spond to joints). Each nodeni is fully specified by four
scalar values,(xi; yi; zi; ri), which specify its location and
size. Given these values for two adjacent nodesni;nj ,
the connecting model patchS(ij) is a region of a plane
with range mapR(ij) that passes through the two points
(xi; yi; zi) and(xj ; yj ; zj) but that is otherwise maximally
parallel to the image plane, with boundary such that its
projectionP(ij) onto the image plane is the convex hull of
the two circles defined by(xi; yi; ri) and(xj ; yj ; rj).

Thus for each segment of the target there corresponds
a windowed depth map; the set of these maps over all
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Figure 1. Each segment of the target is
modeled by a planar patch.

segmentsSk, wherek ranges over those pairs(i; j) for
which a segment exists, forms the complete prediction
against which the observations must be compared.

3.2. Correlation

Given a hypothesized state, the correlation measures the
amount of agreement between the prediction and the obser-
vation, and is qualitatively similar to log likelihood ratios in
that positive values indicate supporting evidence, negative
values indicate refuting evidence, and zero values indicate
neutral evidence. The calculation of the correlation is based
on the idea that given a hypothesized surface of infinite
extent, pixels can beobservedto be either far from or close
to it, and given a hypothesized boundary thereof, pixels can
beexpectedto be far from or close to it. If being far or close
are represented by numbers between+1 and�1, respec-
tively, then the product of observed and expected farnesses
can be taken to be a measure of the conformity between a
given pixel and surface. This measure can then be summed
over all pairings of a pixel with a surface to evaluate the
appropriateness of a hypothesized set of surfaces. That is,

correlation(�; I) =X
k

X
u

observefar(u;Rk; I) expectfar(u;Pk)

wherek sums over all segments andu sums over all pixels.
For each segmentSk and pixelu, the observed farness

between them depends on the difference between the range
I(u) observed in the input and the rangeRk(u) predicted
by that segment. Because there will be errors in both
the measurement and the model, the magnitude of this
difference is then compared against a finite threshold; pixels
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Figure 3.  (�) function for expected farness

falling outside or inside of this threshold are respectively
declared far from or close to the surface. That is,

observefar(u;Rk; I) = �
�
Rk(u)� I(u)

�

where�(�) is shown in Figure 2.
The expected farness between a pixelu and a segment

Sk depends on the position(x; y) of u relative to the 2D
projectionPk of Sk. A true segment boundary would typi-
cally have pixels of the segment inside the boundary, and
pixels of something else outside the boundary. Thus the
depth of pixels just inside the boundary of the predicted
support map should fit the segment model well, and the
depth of those just outside the boundary should fit the
extrapolated segment model poorly. Thus,

expectfar(u;Pk) =  
�
u	 Pk

�

whereu	Pk is the minimum distance between the pointu

and its nearest neighbor in the regionPk, and (�) is shown
in Figure 3.

Thus the correlation between hypothesized state and
input is

correlation(�; I) =
X
k

X
u

�
�
Rk(u)� I(u)

�
 
�
Pk 	 u

�

3.3. Innovation

In addition to maximizing the correlation between the
state and the input, optimizing the residual should also
minimize the unexpectedness or innovation of the state.
Although the target is expected to move, it can generally
be expected not to change size quickly or significantly.

Because of this, the proposed method penalizes hypotheses
in which it does. Specifically, the subparts of the target are
assumed to be of roughly constant shape and size. Then at
every time step, the estimated radius of each node is biased
towards its expected radius, by taking the innovation to be

innovation(�; �̂ (f�1)) = �
X
k

�
rk � �r (f)

k

�2

where�r (f)

k represents the expected radius of each circle, is
a function of the past estimated states�̂ (f�1), and is recur-
sively defined as

�r (f)

k = (1� �) �r (f�1)

k + � r̂
(f�1)

k

where� is a small constant. Segment lengths are not
considered because to do so properly would require the cali-
bration of the unit of range measurement with respect to
pixel size, and this information is not always available.

3.4. Minimization

Formulating a good objective function is important, but
so is being able to optimize it. The residual described above
is a non-convex function of4n variables (wheren is the
number of nodes), which is not trivial to minimize for inter-
estingn. The proposed method alleviates this problem by
explicitly solving for some of the variables in terms of the
others, thereby reducing the dimensionality of the iterative
portion of the optimization problem.

If the 2D support map of a segment is known perfectly,
and if the surface depth model is exact and linear, then
the correct set of depth parameters can be found directly,
for example via least squares. Accordingly, the proposed
method performs a least squares fit of a plane to the
observed depth data for any hypothesized support map.
Specifically, it estimates the set of node depthsfzig as
a group from the set of 2D parametersfxi; yi; rig, by
choosingfRkg to minimize

error(fRkg; fPkg; I) =
X
k

X
u2Pk

�
Rk(u)� I(u)

�2

for any given fPkg and I . This eliminates one out
of every four dimensions of the optimization problem.
Note, however, that this only approximately minimizes the
residual as formulated earlier in this section.

Even after this reduction in dimension, the non-
convexity of the residual function still makes it difficult to
minimize. However, particularly because of the real-time
nature of the intended input, there is likely to be a high
degree of temporal coherence in the motion of the target.
This coherence can be used to hasten convergence of the
minimizer by providing it with an intelligent initial guess,



Figure 4. These images of the experimental results show the estimated target pose overlaid on
the input range image sequence. Darker shades of gray represent smaller distances, and outlined
regions represent the estimated positions of the hand, forearm, and upper arm.

and by limiting its search in parameter space to a neigh-
borhood thereof. The proposed algorithm initializes the
search at each time step with the estimated state from the
previous time step.

4. Implementation and Results

The proposed algorithm was implemented in Matlab.
Residual minimization was done using thefminu function
in the Optimization Toolbox; this function implements the
BFGS (Broyden-Fletcher-Golfarb-Shanno) quasi-Newton
method with a mixed quadratic and cubic line search
procedure. Derivatives of the residual function were calcu-
lated using finite differences instead of analytically.

The method was applied to track a human hand, forearm,
and upper arm in a range image sequence derived from real
stereo footage. Because the model of such a three-segment
structure would expect the shoulder as well as the hand to
be an end of the articulated chain, whereas in actuality the
shoulder is connected to the torso, the expected radius�r (f)

m

of the shoulder used in the innovation term was modified
to encourage the estimated shoulder size to be similar to the
elbow size, to compensate for the lack of an depth boundary
on the torso side of the shoulder. Specifically,

�r (f)

m = (1� �) �r (f�1)

m + �(1� �) r̂ (f�1)

m0 + �� r̂ (f�1)

m

where� is a small constant, andm andm0 refer to the
shoulder and elbow nodes, respectively.

Figure 4 shows results for a video-rate image sequence
of a real human. The range images were produced by
recording the video streams from a pair of synchronized
digital cameras, then processing each stereo pair off-line
using the census transform [20] with subpixel interpo-
lation to produce depth data. The clipping window of the
sequence shown in Figure 4 has a resolution of120� 120,
and the frame rate is the standard video rate. Running
times were on the order of 30 seconds per frame on a
300 MHz Pentium II computer, using unoptimized Matlab
code throughout. Initialization of the tracker was done by
hand.

5. Discussion and Future Work

The images of the experimental results suggest that
the proposed method works reasonably well. Moreover,
although the current implementation is rather slow, if the
method were implemented in a compiled language such as
C or Fortran, and if a more suitable function optimization
routine were used (for example a derivative-free, trust-
region method), it should be significantly faster.

As described, this work makes many simplifying
assumptions, the most inaccurate of which is perhaps that of



planar surfaces. However, this simplification is not intrinsic
to the method, and in fact can readily be generalized to
many classes of curved surfaces. As long as the depth maps
of the set of modeled surfaces are representable by linear
combinations of the depth maps of a set of basis surfaces,
the same method of least-squares surface fitting will suffice
to estimate the surface parameters. The main disadvantage
of a more general surface model would be an increased diffi-
culty in minimizing the residual. It would be worthwhile
to further investigate the tradeoffs involved in choosing the
complexity of the model.

The present method also does not handle surface
projection boundaries of any shape other than the convex
hull of two circles, nor does in handle occlusions. Both of
these limitations could be addressed by using an iteratively-
reweighted least squares estimation of the surface depth
parameters. This would be another area for further work
that although technically involved, should conceptually be
fairly straightforward.
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