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Deformable Graph Model for Tracking Epithelial
Cell Sheets in Fluorescence Microscopy

Roger S. Zou and Carlo Tomasi

Abstract—We propose a novel method for tracking cells that
are connected through a visible network of membrane junctions.
Tissues of this form are common in epithelial cell sheets and
resemble planar graphs where each face corresponds to a cell.
We leverage this structure and develop a method to track the
entire tissue as a deformable graph. This coupled model in which
vertices inform the optimal placement of edges and vice versa cap-
tures global relationships between tissue components and leads to
accurate and robust cell tracking. We compare the performance
of our method with that of four reference tracking algorithms
on four data sets that present unique tracking challenges. Our
method exhibits consistently superior performance in tracking all
cells accurately over all image frames, and is robust over a wide
range of image intensity and cell shape profiles. This may be an
important tool for characterizing tissues of this type especially in
the field of developmental biology where automated cell analysis
can help elucidate the mechanisms behind controlled cell-shape
changes.

Index Terms—Cell tracking, deformable graph model,
Drosophila melanogaster, epithelial cell sheets, fluorescence mi-
croscopy, Scale-Invariant Feature Transform (SIFT) flow.

I. INTRODUCTION

QUANTITATIVE characterization of cell and tissue be-
havior from image data is important in many biological

studies that aim to elucidate causal relationships between
biochemical pathways and biophysical behavior. These inves-
tigations perturb tissues genetically or otherwise and quantify
the resulting phenotypical changes.

Recent advances in live-imaging techniques have led to
image data sets with high spatial and temporal resolution [1].
Fluorescence microscopy is frequently used for these studies
to interrogate biological structures with high sensitivity and
specificity [2]. Unfortunately, manual quantification of such
data sets is very labor-intensive and frequently infeasible.
Computer aided techniques are therefore necessary and usually
involve the combination of tissue segmentation and tracking.
However, these automated techniques face many challenges.
First, such images frequently exhibit poor signal-to-noise
ratios (SNR) due to background autofluorescence [3] and the
low laser light intensities that are needed to limit photobleach-
ing [2]. Second, biological structures commonly experience
significant nonlinear deformations and large displacements
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Fig. 1. Examples of epithelial cell sheets in the Drosophila melanogaster
embryo. Left: 200×200 px image of amnioserosa cells during dorsal closure
(image from [4]). Right: 200×200 px image of epithelium before dorsal fold
formation (image from [5]). Both scale bars are 10 µm (px = pixel).

between image frames. Third, different fluorescence labeling
techniques may lead to diverse appearances, even for different
samples of the same biological entity. Fourth, the image in-
tensity profiles may gradually vary over the course of imaging
due to changes in the biological structure and/or deviations in
the intensities of the fluorophores.

Given these challenges, algorithms that incorporate prior
information on the structure of the tracked object can poten-
tially perform significantly better than general-purpose track-
ing methods, yet such algorithms should be sufficiently general
for application to a wide range of biological systems. In this
paper, we advance this philosophy by proposing a method
for tracking a common biological structure: tissues composed
of adjacent cells connected through a visible network of
membrane junctions. This architecture is frequently found
in epithelial cell sheets and is of special importance in the
field of developmental biology, in which quantification of
these tissues helps to elucidate the biochemical processes that
underlie the tightly controlled physical transformations from a
single cell into a complex, multicellular organism. Examples
in which this architecture is observed can be found across
phylogeny, ranging from Drosophila melanogaster (fruit fly)
dorsal closure [4], ventral epithelium [6], dorsal folds [5],
dorsal thorax [1], and ovary follicle cell epithelium [7] to
Danio rerio (zebrafish) epiboly [1] to Mus musculus (mouse)
anterior visceral endoderm [1] to Arabidopsis thaliana (flow-
ering plant) shoot apical meristem [8] to Caenorhabditis
elegans (roundworm) ventral enclosure [9]. Figure 1 shows
two examples of such structures.
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A. Related Work
The literature on cell tracking can be organized into two

general methodologies. The first includes methods in which
segmentation is first performed on every frame, followed by
a separate matching process. Common approaches to segmen-
tation involve the use of algorithms such as watershed [8],
[10]–[12], image filtering [6], and thresholding techniques
such as Otsu’s method or locally adaptive thresholds [13],
[14]. Matching schemes subsequently assign correspondences
between segmented components across image frames using
a variety of methods [8], [15], [16]. Segmentation is usually
very efficient, but matching frequently requires complex and
domain-specific strategies to account for ambiguous, non-
bijective correspondences. Furthermore, segmentation is per-
formed on each frame independently and does not utilize
any high-level information about the underlying biological
structure. The accumulation of tracking errors due to incorrect
segmentation can also be problematic: While segmentation of
one frame may be close to perfect, the number of tracking
errors over the span of multiple frames may result in the
tracker losing a significant number of cells.

The second methodology is a model evolution approach.
An initial model is deformed to track the object of interest
by using the results from the current frame as initialization
to track in the next frame. Common examples include active
contours [9], [17]–[21], level sets [22]–[24], and mean-shift
tracking [25]. These methods often have the advantage of
trivially obtaining segmentation and cell correspondences from
the model, but are frequently more computationally expensive
and may require domain-specific methods of handling object
topology changes. In tracking groups of cells, these methods
usually track cells individually and assume spatial indepen-
dence between individual contours, which may or may not be
valid depending on the specific application.

Both methodologies have also been previously applied to
imagery closely related to the membrane networks we study,
using either separate segmentation and matching [6], [8] or
model evolution [9], [26] approaches.

B. Our Contributions
We distinguish our contributions into four categories. First,

our proposed method tracks the entire tissue as a single
structure, and utilizes this high-level information to improve
tracking at the cellular level. Visual tracking data ranging from
the tissue level to sub-cellular level is recorded. This distin-
guishes our method from other model evolution approaches
that exclusively focus on independently tracking individual
cells.

Second, our graph model completely parametrizes the be-
havior of the tissue with a pre-specified number of variables.
This model is modular in that blocks with different models for
vertices and edges of a graph can be easily swapped in and
out within the same tracking framework, allowing for possible
applications in multiple domains.

Third, our tracking method of optimizing a graph model
is novel from an algorithmic perspective. Whereas frequently
model evolution methods either track points or evolve curves,

we track both in unison. A unique feature of our method is
the tight coupling between vertices and edges: vertices guide
the optimal placement of edges while edges guide the optimal
placement of vertices for a solution that is optimal according
to a more global criterion.

Fourth, although past contributions have offered methods
for tracking biological structures of this type, they frequently
focus on the biology and do not compare their algorithms to
other methods in literature. We present a thorough analysis of a
wide variety of methods through a consistent set of evaluation
measures. Furthermore, the data sets used in our evaluations
present unique tracking challenges that highlight strengths and
weaknesses of different tracking methods. We hope this will be
useful for biologists who need to make informed choices when
selecting the best tracking algorithm for their applications. We
also make our source code publicly available at http://github.
com/rogerzou/cell-sheet-tracker.

II. PROBLEM STATEMENT AND TECHNIQUES

Our method aims to track a graph that deforms in a video
sequence, in which the first graph in the sequence is specified.
This initial graph can be constructed from any segmentation,
whether obtained by hand or by an algorithm. We assume
that the state of the graph is Markovian, so that tracking only
needs to consider two consecutive frames I and J . Given graph
GI = (VI , EI) in image I , the objective is to determine its
corresponding graph GJ = (VJ , EJ) in image J . Although we
implement our algorithm in d = 2 dimensions, the derivation
below is general for d ≥ 2. Furthermore, we assume that no
new vertices or edges are created in frames after the first,
although vertices and edges can merge and/or disappear. In
practice, this means that our method can model events such
as cell apoptosis, but not cell divisions or emergence of new
cells.

Section II-A details the representation of our model. Section
II-B presents an overview of our proposed tracking method.
Sections II-C to II-E derive the main tracking equations.
Section II-F explains how to incorporate SIFT flow [27] for
improved tracking robustness and faster optimization conver-
gence. Section II-G summarizes our method with pseudocode.

A. Graph Representation
We represent graph vertices as positions in the image. Bi-

ologically, they are placed on membrane branch-points where
multiple membranes merge. A vertex i ∈ V is represented by
its position vi and (i, j) ∈ E designates positions vi and vj

to be connected by an edge.
We represent edge geometry with B-splines [28] whose

endpoints are constrained to vertices. Biologically, edges trace
the visible membrane junctions that link two adjacent cells. An
open spline in d dimensions between vertex positions vi and
vj with k + 2 control points is a curve of parametric form

γ(s,qij) = P (s)qij for s ∈ [0, 1] , (1)

where qij is a vector of dimension m = d(k+2) that collects
the control points and P (s) ∈ Rd×m is a polynomial matrix
function of the curve parameter s. The first and last control

http://github.com/rogerzou/cell-sheet-tracker
http://github.com/rogerzou/cell-sheet-tracker
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Fig. 2. Graph representation. Left: 108 × 108 px image of a cell on
the dorsal opening of a Drosophila embryo. Right: same image with our
graph representation overlaid. Filled circles represent vertices, curves represent
edges, and the graph face represents a cell. The scale bar is 10 µm. [Color
picture online.]

points (the endpoints) of qij are constrained to coincide with
the vertex positions vi and vj :

qij =
[
v⊤
i , ξ

⊤
ij ,v

⊤
j

]⊤
∈ Q(i, j) , (2)

where ξij is the vector of interior control points of dimension
r = dk and Q(i, j) is the space of control points that satisfy
these constraints. Thus, the graph is completely parametrized
with d numbers for each vertex and r numbers for each edge.
The number of control points in each spline is determined by
a scalar parameter ρ that specifies the approximate distance
between control points for all edges. Figure 2 illustrates our
graph representation on a sample cell.

B. Tracking Algorithm

This representation is naturally amenable to measures of
dissimilarity (what we will henceforth call ‘cost’) between
graphs embedded in images. Tracking a graph between images
I and J entails deforming GI in I to some GJ in J such that
the cost CG between GI and GJ is minimized. We construct
CG from individual vertex and edge costs.

1) Vertex cost: We define the vertex cost using a least-
squares dissimilarity measure [29]; the cost ci of placing a
vertex at position vi ∈ J given that the same vertex was at
position ui ∈ I is

ci =

∫

Rd
[ri(x)]

2 wv(x) dx , (3)

where

ri(x) = I(x+ ui)− J(x+ vi) (4)

is the vertex residual and wv(x) : Rd → R+ is a truncated
zero-mean Gaussian function that localizes the integral to a
finite interval of length ω in each dimension. This is the first
of many definitions of costs and residuals in this paper; their
explicit dependence on the graph model is not shown, unless
needed for emphasis (For example, in this case ci and ri(x)
are unambiguously also functions of ui and vi).

2) Edge cost: We define the edge cost using a similar least-
squares dissimilarity measure extended to curves [28]. For a
spline γ(s,qij) between vertex positions vi and vj , the edge
cost of assigning qij to the spline in J given that the same
spline had control points pij in I is

cij =

∫ 1

0

{∫

Rd−1
[rij(s, t)]

2 we(t) dt

}
σ(s) ds , (5)

where

rij(s, t) = I(y(s, t,pij))− J(y(s, t,qij)) (6)

is the edge residual and

y(s, t,qij) = γ(s,qij) + F (s,qij) t (7)

is a function that specifies an image sampling point for some
s and t. The parameter s ∈ [0, 1] varies along the tangent
vector and t ∈ Rd−1 varies along the remaining d− 1 Frenet
vectors of γ. These remaining vectors compose the columns of
F (s,qij), and column Fk can be written as a linear function

Fk = Nk(s)qij (8)

of the control points. The truncated zero-mean Gaussian
function we : Rd−1 → R+ localizes the inner integral to an
interval of length ℓ in each dimension and σ(s) is the speed
at which the point γ(·, s) travels on γ.

3) Graph cost: Because the problem of estimating the edge
path between vertex positions vi and vj is independent of
the problem of finding the edge path between any other pair
of vertex positions, the independent variables of the graph
tracking problem are the vertex positions v1, . . . ,vn of the
graph in J , and the optimal spline control points q∗

ij for
(i, j) ∈ E are in turn functions of the vertex positions. The
optimization problem is therefore

z∗ = argmin
z

CG(z) , (9)

where

CG(z) = α
∑

i∈V

ci + (1− α)
∑

(i,j)∈E

cij(q
∗
ij) (10)

is the graph cost function. The convex weight α ∈ [0, 1]
weighs the contributions of vertex and edge costs,

z =
[
v⊤
1 . . . v⊤

n

]⊤ (11)

is a column vector that collects all the vertex positions, and

q∗
ij = arg min

qij∈Q(i,j)
cij(qij) (12)

is the vector of spline control points that minimizes cij over
the space Q(i, j) (introduced in Equation 2).

The minimization procedure we use for both Equations 9
and 12 is the Gauss-Newton algorithm [30], which requires
the gradient and first-order Hessian approximation (which we
will henceforth call the ‘Gramian’) of their respective objective
functions at each iteration. Section II-C derives the derivatives
necessary to solve the edge problem in Equation 12. Sections
II-D and II-E derive the derivatives necessary to solve the
graph problem in Equation 9.
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C. Edge-Optimization Derivatives
Determining the optimal control points q∗

ij in Equation 12
with the Gauss-Newton algorithm requires both the gradient
∇q cij and Gramian Gq cij of the edge cost cij in Equation 5.

To obtain these quantities, we begin by computing the
gradient of the residual in Equation 6 with respect to qij ,

∇qrij(s, t) = −
[
∂y(s, t,qij)

∂q⊤
ij

]⊤

∇J (y(s, t,qij)) , (13)

where ∇J(y) is the gradient vector of image J at y. In
Equation 13, the Jacobian of y with respect to qij ,

∂y(s, t,qij)

∂q⊤
ij

= P (s) +
d−1∑

k=1

Nk(s) tk , (14)

follows from Equations 1, 7, and 8. We now have the necessary
components to construct the gradient

∇qcij = 2

∫∫
rij [∇qrij ] we(t) dtσ(s) ds (15)

and the Gramian

Gqcij = 2

∫∫
[∇qrij ] [∇qrij ]

⊤ we(t) dtσ(s) ds (16)

of cij , where dependence of rij and ∇qrij on s, t, and qij

is left implicit and integration limits are as in Equation 5.

D. Effect of Vertex Displacement on the Optimal Spline
Determining the optimal graph parameters z∗ in Equation 9

using the Gauss-Newton algorithm entails iteratively shifting
the collection of vertices z to z∗ using the gradient ∇zCG

and Gramian GzCG of the graph cost CG in Equation 10.
In this equation, the optimal spline parameters q∗

ij , for {j |
(i, j) ∈ E}, are functions of the changing vertex positions,
so to correctly compute the derivatives of the graph cost we
must consider the effects of displacing a spline’s endpoints
(components of z) on the displacements of its interior control
points ξ in order to maintain edge optimality.

To this end, suppose that for some spline γ(s,qij) with
endpoints vi and vj , we shift vi by an infinitesimal amount.
Then a necessary condition for the spline to be optimal is that
the gradient of cij with respect to the internal control points
ξij equals the zero vector:

∂cij
(
vi, ξij(vi,vj),vj

)

∂ξij
= 0 , (17)

where cij is written explicitly as a function of all three
components of qij , and ξij is written explicitly as a function
of vi and vj for emphasis. Then the Jacobian of Equation 17
with respect of vi is

∂

∂v⊤
i

[
∂cij
∂ξij

]
=

∂2cij
∂ξij ∂v

⊤
i

+
∂2cij

∂ξij ∂ξ
⊤
ij

∂ξij
∂v⊤

i

= 0 , (18)

and the implicit function theorem entails

∂ξ∗ij
∂v⊤

i

= −
[

∂2cij

∂ξij ∂ξ
⊤
ij

]−1
∣∣∣∣∣∣
ξij=ξ∗

ij

[
∂2cij

∂ξij ∂v
⊤
i

]∣∣∣∣∣
ξij=ξ∗

ij

(19)

for the optimal solution (assuming the first factor in the right-
hand side is invertible). Both parts of Equation 19 can be
approximated with sub-matrices of Gq cij in Equation 16.
We can now quantify how the optimal interior control points
change with respect to either endpoint (vi shown):

∂q∗
ij

∂v⊤
i

=

[
Id ,

[
∂ξ∗ij
∂v⊤

i

]⊤
, 0d

]⊤

, (20)

where Id and 0d are the d × d identity and zero matrices,
respectively. As we shall see in Section II-E, the Jacobian
in Equation 20 is a crucial component of the graph cost
derivatives.

E. Graph-Optimization Derivatives
To derive expressions for ∇zCG and GzCG, we need the

gradient of the vertex cost in Equation 3 with respect to vi,

∇i ci = 2

∫
ri(x) [∇iri(x)]wv(x) dx . (21)

The gradient with respect to vi of the residual ri(x) (Equation
4) is

∇i ri(x) = −∇J(x+ vi) , (22)

the image gradient of J evaluated at x + vi. Similarly, the
gradient of the edge cost in Equation 5 for an optimal spline
with respect to vi (assuming vertex vj is unchanged) is

∇i cij = 2

∫∫
rij [∇irij ]we(t) dtσ(s) ds , (23)

where rij = rij(s, t,qij) is the edge residual defined in
Equation 6. Its gradient with respect to vi is

∇i rij = −
[
∂q∗

ij

∂v⊤
i

]⊤ [
∂y

∂q⊤
ij

]⊤
∣∣∣∣∣∣
qij=q∗

ij

∇J(y) , (24)

where y = y(s, t,qij). The first factor in the right-hand
side of Equation 24 is the Jacobian defined in Equation 20,
the second factor is defined in Equation 14, and the third
factor is the image gradient evaluated at y. We then have the
components for the gradient of the graph cost in Equation 10
with respect to vi,

∇i CG = α [∇i ci] + (1− α)
∑

k∈N (i)

[∇i cik(q
∗
ik)] , (25)

where N (i) is the set of vertices corresponding to vertex
positions vk that are connected to vi by an edge with optimal
control points q∗

ik. To construct the Gramian of the graph cost,
we first obtain the Gramian of the vertex cost,

Gii ci = 2

∫
[∇iri(x)] [∇iri(x)]

⊤ wv(x) dx , (26)

the Gramian of the edge cost with respect to vi,

Gii cij = 2

∫∫
[∇irij ] [∇irij ]

⊤ we(t) dtσ(s) ds , (27)

and the Gramian of the edge cost with respect to vi and vj ,

Gij cij = 2

∫∫
[∇jrij ] [∇irij ]

⊤ we(t) dtσ(s) ds . (28)
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Equations 26 and 27 yield the diagonal components of the
graph cost Gramian with respect to vi,

Gii CG = α [Gii ci] + (1− α)
∑

k∈N (i)

[Gii cik(q
∗
ik)] , (29)

and Equation 28 yields the off-diagonal components with
respect to vi and vj for (i, j) ∈ E (otherwise, Gijcij = 0),

Gij CG = (1− α)
[
Gij cij(q

∗
ij)

]
. (30)

The gradient in Equation 25 is the ith component of the graph
cost gradient

∇zCG =
[
[∇1CG]

⊤ . . . [∇nCG]
⊤
]⊤

(31)

while the terms in Equations 29 and 30 are the (i, i)th and
(i, j)th components of the graph-cost Gramian

GzCG =

⎡

⎢⎣
G11CG · · · G1nCG

...
...

Gn1CG · · · GnnCG

⎤

⎥⎦ . (32)

F. SIFT Flow for Vertex Initialization

SIFT flow [27] is designed to robustly align images that
differ through complex spatial distortions, and Lee et al. [9]
used this method to improve active contour tracking. We
incorporate a similar idea by using the final vertex positions
z∗ of the current frame, displaced with SIFT flow, as ini-
tialization to track the next frame. Better initialization helps
to avoid local minima and ensure faster convergence during
optimization. Compared to simply using z∗ of the current
frame as initialization for the next frame, in practice this
addition significantly reduces the number of Newton iterations
and improves tracking robustness.

G. Method Summary

Algorithm 1 summarizes the function GRAPHOPT for com-
puting the initial graph G0 and the graph tracking results
G1, . . . , GN from the image stream I0, . . . , IN . In line 2, the
initial graph G0 can be constructed from any segmentation
of the initial frame (obtained manually or automatically).
Each iteration of the for loop in lines 3-11 finds the optimal
graph for each image, given the optimal graph from the
previous image. UPDATEGRAPHTOPOLOGY in line 4 merges
any vertices whose distances are below a fixed threshold of
2 pixels and handles the resulting graph topology changes.
SIFTFLOW in line 5 uses SIFT flow to compute the initial
graph vertex positions for graph Gi in image Ii, and the repeat
loop in lines 6-10 computes a solution to Equation 9 for Gi

using the Gauss-Newton algorithm. In so doing, the EDGEOPT
function in line 9 computes a solution to Equation 12 for every
edge of the graph so as to maintain edge optimality as the
vertex positions move. Algorithm 2 details the internals of
EDGEOPT. The repeat loop in lines 4-7 solves Equation 12
for a particular edge ek using the Gauss-Newton algorithm.

Algorithm 1 Graph optimization

1: function GRAPHOPT(I0, . . . , IN )
2: compute initial graph G0 = (V0, E0) from I0
3: for i = 1, . . . , N do
4: Gi ← UPDATEGRAPHTOPOLOGY(Gi−1)
5: Gi ← SIFTFLOW(Gi, Ii−1, Ii)
6: repeat
7: compute gradient ∇zCG and Gramian GzCG

8: compute and take Newton step ∆z on Gi

9: Gi ← EDGEOPT(Gi, Ii−1, Ii)
10: until convergence
11: end for
12: return G0, . . . , GN

13: end function

Algorithm 2 Internal edge optimization

1: function EDGEOPT(G = (V,E), I1, I2)
2: for k = 1, . . . , |E| do
3: retrieve edge ek = (i, j) ∈ E
4: repeat
5: compute gradient ∇qcij and Gramian Gqcij
6: compute and take Newton step ∆q on ek
7: until convergence
8: update E with updated ek
9: end for

10: return G
11: end function

III. EXPERIMENTAL RESULTS

We compared the performance of our tracking algorithm
to that of other published methods. Section III-A introduces
the four evaluation data sets. Section III-B describes the four
published methods we compare to. Section III-C describes
the two measures used to quantify tracking performance.
Section III-D presents the parameters used for all evaluation
experiments and Section III-E presents the results of these
experiments. Section III-F presents a sensitivity analysis of
our algorithm parameters and discusses heuristics for selecting
good values for them. Section III-G provides more insight into
the importance of edge contributions for better tracking. Sec-
tion III-H presents the computation times for all algorithms.
Section III-I discusses limitations of our approach.

A. Image Data Sets
We evaluate trackers on four data sets. They all span 101

frames and exhibit significantly different SNR, membrane
shapes, and image intensity profiles. These differences pose
unique challenges to different tracking algorithms (Figure 3).

Three data sets (DDC1, DDC4, DNC1) consist of time-lapse
images of dorsal closure in the D. melanogaster embryo. This
two-hour process occurs late into embryogenesis, and consists
of approximately 200 cells that constrict along the anterior-
posterior axis to form a seamless epithelium. These data sets
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Fig. 3. Sample tracking results for different algorithms and data sets, all at the last frame (frame 101). A region of each data set is selected to highlight
certain features in tracking results. Each overlaid, closed loop represents a tracked cell. Certain tracking errors are emphasized with arrows. Columns: (a)
original image, (b) hand-labeled ground truth, (c-g) results from different tracking algorithms. MT refers to our proposed method. Rows: (I) 101 × 101 px
image crop of DDC1; (II) 180× 180 px image crop of DDC4; (III) 101× 101 px image crop of DNC1; (IV) 101× 101 px image crop of DVF1. All scale
bars are 10 µm. [Color picture online.]

were acquired from live embryos using a 40x water immersion
objective on a Zeiss Axioplan confocal microscope, and were
obtained from the authors of [4]. DDC1 shows a wild-type em-
bryo during dorsal closure, containing 82 visible cells imaged
at 10 seconds per frame (272×483 px, 0.352 µm/px resolution,
px=pixels). DDC4 shows a wild-type embryo before dorsal
closure, containing 42 visible cells imaged at 30 seconds per
frame (672×512 px, 0.305 µm/px resolution). DNC1 shows a
mutant nompC embryo with a mechanically gated ion channel
(MGC) deficiency [31] during dorsal closure, containing 25
visible cells imaged at 15 seconds per frame (512 × 272 px,
0.352 µm/px resolution).

The fourth data set (DVF1) consists of images, along the
depth dimension, of the D. melanogaster dorsal epithelium
before dorsal fold formation in a wild-type embryo. Dorsal
fold formation is a 30-minute process occurring three hours
into embryogenesis that produces two epithelial folds. This
data set was acquired from a heat-methanol fixed embryo
using a 63x multi-immersion objective on a Leica SP5 spectral
confocal microscope, and was obtained from the authors of a
previous study [5]. It shows 98 visible cells imaged spatially
(300× 300 px, 0.160 µm/px resolution) at a depth resolution
of 0.126 µm between consecutive slices.

B. Other Algorithms for Comparison
We compared our algorithm to four others published in the

literature. The EDGE method in Gelbart et al. [6] (which

we will refer to as EG) and the conditional random field
method in Chakraborty et al. [8] (which we will refer to
as RF) both segment each frame separately before matching
segmented regions. In contrast, the traditional snakes used as a
baseline [32] (which we will refer to as SN0), the snakes with
SIFT flow method in Lee et al. [9] (which we will refer to
as SN1), and our method (which we will refer to as MT), all
follow the model evolution approach of deforming an initial
model over all frames.

To reconcile these differences between tracking methods
in a fair evaluation, we ensured that other methods utilize
at least as much of the same prior information as our own.
We accomplished this task by supplying each method with
the same cell segmentations. Since both EG and RF suggest
a segmentation method, we used the one that performed
better for each data set. We experimented with the water-
shed algorithm in MATLAB’s image processing toolbox to
implement the watershed segmentation [33] suggested by RF
as well as a filtering/thresholding method suggested by EG,
taken directly from their source code. Since we found that
watershed consistently performed better on all data sets, we
used MATLAB’s watershed algorithm to generate segmenta-
tions for all data sets. A detail that affects the quality of
watershed is an initial H-minima transform to suppress shallow
minima, which is controlled by the hminima parameter that
specifies the suppression height threshold. A low hminima
results in over-segmentation and a high hminima results in
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under-segmentation. The optimal values of hminima were
found through a manual, exhaustive search over a reasonable
parameter range to yield the visibly best segmentation over
all frames, as judged by a biologist. EG and RF used this
segmentation for their matching steps, while MT, SN0, and
SN1 used the first frame of it to automatically construct their
initial models.

We also performed light Gaussian filtering on each data set
before tracking to smooth out disruptive noise. Preprocessing
methods tailored to enhancing cell membranes could be an-
other option [34], [35].

We obtained source code for EG and RF from their authors,
and implemented SN0 according to a classic recipe [32]. We
were unable to obtain code for SN1, so we implemented
that method ourselves to the best of our ability following its
description [9]. We did not implement the non-intersecting
force specified in that paper because our data sets did not
exhibit the problem of intersecting contours.

C. Ground Truth and Tracking Evaluation Methods
For ground truth, a human expert segmented, every 10

frames, all cells that remain visible for the entire 101 frames
of each data set. Given a cell Ci in the initial frame, let Yi

be the true region corresponding to Ci in a human-segmented
frame, and let Xi be the region the tracker returns in that
frame for cell Ci. The region of a cell is defined to be the set
of image pixels inside the cell. We say that Xi corresponds
to Yi if the area |Yi ∩ Xi| of the overlap region of Yi and
Xi is not empty and Yi overlaps more with Xi than with any
other Xj in that frame. If Xi and Xj overlap with Yi the
same amount, then Xi, where i < j, is selected. Otherwise,
Ci is lost, either because Xi is missing (i.e. the tracker lost the
cell) or because Yi overlaps more with some other Xj in that
frame (i.e. the tracker incorrectly swapped correspondences).
We then evaluate tracking performance in two distinct ways:

• δ-region error evaluates an algorithm’s ability to accu-
rately delineate the region that corresponds to each cell.

• % lost cells evaluates an algorithm’s ability to correctly
track as many cells as possible over multiple frames.

Together, these two measures evaluate an algorithm’s ability to
correctly track the greatest number of cells with the greatest
region accuracy for each cell. Better algorithms have lower
values on both measures.

1) δ-region error (Eδ): This quantity measures the error
in region overlap between ground truth cell regions and their
corresponding tracked cell regions. However, region overlap is
an uncertain quantity because the visible membranes junctions
that delineate cell boundaries are generally more than 1 pixel
wide. Thus, the true cell region exists in a space of possible
regions, and the ground truth is just one sample from that
space. We then formulate the error measure so that any region
whose boundary is everywhere within some δ > 0 distance
from the true boundary is deemed to have no error. More
specifically, let set Xi represent the tracked region of cell
Ci and Yi(x) represent its corresponding ground truth region,
dilated (x > 0) or eroded (x < 0) by x pixels. Yi(0) is the
original ground truth region, Yi(δ) indicates the Yi(0) region

∂Y (−δ)i

∂Y (δ)i

∂Y (0)i

∂X i

Fig. 4. Definition of δ-region error. The black curve is the outer boundary
of the tracked region Xi of Ci. The white curve is the outer boundary of the
ground-truth region Yi(0), and the outer and inner edge of the grey band are
the outer boundaries of the dilated and eroded versions Yi(δ) and Yi(−δ)
of Yi(0). Vertical hatches cover the false positive regions Xi ∩ ¬Yi(δ) and
horizontal hatches cover the false negative regions ¬Xi ∩ Yi(−δ).

dilated by δ pixels, and Yi(−δ) indicates the Yi(0) region
eroded by δ pixels. We then define the outside region for Ci

to be

Zi(δ) =
[
Xi ∩ ¬Yi(δ)

]
∪
[
¬Xi ∩ Yi(−δ)

]
, (33)

the union of both false positive and false negative pixels that
do not lie within a 2δ-wide band around the ground-truth
region boundary. Figure 4 illustrates the definition of Zi(δ).
We can then define the δ-region error over all tracked cells in
a particular frame to be

Eδ =
|
⋃

i Zi(δ)|
|
⋃

i Yi(0)|
× 100 , (34)

the size of the union of all outside regions (both false positives
and false negatives, as compared with the reference regions),
divided by the size of the union of all ground truth (or
reference) regions. This measure is not a percentage, and it is
possible in principle for Eδ to be greater than 100. A biologist
determined δ = 3 pixels to be reasonable for all four data sets.

2) % lost cells (Lc): This quantity measures the percent of
all cells that an algorithm has lost at a particular time point.
Formally, let S represent the set of ground truth cells and
T represent the set of all ground truth cells that correspond
to tracked cells. Since T ⊆ S and we do not evaluate the
introduction of new cells (i.e. a cell that is included after the
first frame is excluded from consideration), it must be the case
that |T | ≤ |S|. Then the percent of lost cells is given by

Lc =
|S|− |T |

|S| × 100 . (35)

D. Experimental Parameter Settings

Our tracking algorithm relies on four parameters: ω, the
pixel width of the Rd integration interval for vertex cost
in Equation 3; ℓ, the pixel width of the Rd−1 integration
interval for edge cost in Equation 5; α, the convex weight
on the vertex and edge contributions in Equation 10; and ρ,
the approximate pixel spacing between interior control points.
For our evaluation, we chose these parameters to be ω = 21,
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TABLE I
OPTIMAL PARAMETERS FOUND WITHIN RANGE [MIN, MAX] FOR EACH

DATA SET (COLUMNS) AND REFERENCE METHOD (ROW BLOCKS).
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SN
1

SN
0

R
F

E
G

param min DDC1 DDC4 DNC1 DVF1 max

tac 0 0.6000 0.6058 0.6000 0.6000 1
tlb 2 5 8 5 5 10
tcd 1 10.000 3.3080 10.000 10.000 20

�2 0.01 0.0667 0.0752 0.0268 0.0667 10
�1 10 100.00 44.210 18.701 100.00 100
w 0.25 0.7500 0.4043 0.3517 0.7500 0.75
� 0.01 0.1250 0.6414 0.3847 0.1250 1.0

↵ 0.1 0.3140 1.3558 0.4140 1.0293 2
� 0.1 1.6554 1.0926 0.1066 1.1056 2
� 0.1 1.1255 1.8137 1.1417 0.8675 2
 0.1 0.1202 0.1013 0.1530 0.1566 0.2

↵ 0.1 0.1467 1.4341 0.1456 1.0293 2
� 0.1 0.5042 1.3773 0.4618 1.1056 2
� 0.1 1.9437 1.7817 1.9292 0.8675 2
 0.1 0.1432 0.1157 0.1630 0.1566 0.2

ℓ = 19, α = 0.3, and ρ = 10 for all data sets, based on our
intuition on the behavior of the algorithm.

For reference algorithms, we systematically determined
their optimal parameters separately for each data set by
finding the parameter settings that minimizes the mean of
Eδ and Lc at the last tracked frame. We used the Simulated
Annealing (SA) algorithm [36] for this minimization. The
parameter search range and initial values used as input into
SA were selected based on insights from each algorithm’s
original paper and on intuition that came with trial-and-error
experimentation. Given the long running times needed to track
an entire data set (Section III-H), each iteration of SA was
performed by tracking a subset of cells over 11 frames. By
comparing tracking runs on the entire data set with both
optimal and initial parameter settings, we verified that the
optimal parameters obtained from this scheme generalized to
superior performance on the entire data set. Table I shows
the search range and optimal values found using SA for each
data set and algorithm. These optimal values were used for
all performance evaluations. For EG, tac is the threshold on
the maximum area change of a tracked cell between frames,
tlb is the number of previous frames to consider for region
matching, and tcd is the threshold on the maximum centroid
displacement of a tracked cell between frames. For RF, λ2,
λ1, w, and γ are described in the original paper [8]. For SN0
and SN1, α, β, and γ are described in the original paper [32],
and κ scales the gradient of the external energy term Eext for
finer control of the optimization procedure.

E. Tracking Results
Figures 3 and 5 show the performance of all algorithms

on all data sets. We have also included four supplementary
movies in the AVI format, corresponding to the four data sets,
that illustrate per-frame tracking results with our algorithm.
This will be available at http://ieeexplore.ieee.org.

DDC1 is characterized by strong signal and distinct cell
boundaries (row I in Figure 3). EG and RF performed very
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Fig. 5. Tracking evaluation that quantifies the performance of each algorithm
on each data set. Plots show the (a) δ-region error and (b) average % lost
cells measures on the y-axes with respect to image frames on the x-axes.

well because watershed segmentation performed very well.
Even so, cells gradually got lost over the course of tracking,
resulting in Lc > 10% at the last frame for both methods
(plot Ib in Figure 5). SN0 and SN1 also lost a number of
cells (Lc > 10%) due to the active contours losing track
of boundaries and cells shrinking to zero area. Contours in
SN0 and SN1 may also drop part of a boundary (arrows in
images Ie and If in Figure 3), resulting in Eδ > 2.5 (plot Ia in
Figure 5). In contrast, MT did not experience these problems,
resulting in good performance on both measures (Eδ < 0.5
and Lc < 10%). MT performed the best on Lc, and only
RF performed slightly better than MT on Eδ due to accurate
watershed segmentation of its remaining, tracked cells.

DDC4 is characterized by low SNR (row II in Figure
3) and large image deformations between adjacent frames.
SN0, SN1, and MT all exhibited comparable results on Eδ ,
although our method performed consistently better than SN0
or SN1 on this measure after frame 71. All three methods
experienced tracking drift due to visible particles that float
in the background, but the drift was less for MT (arrows in
row II of Figure 3). The weak and variable signal of DDC4
also resulted in very inconsistent segmentations, leading to
the frequent additions of false membranes or loss of true
membranes between adjacent frames. As a consequence, EG
and RF lost track of a significant number of cells. Indeed, EG
and RF both lost over 50% of cells by frame 51, while MT
did not lose any cells after the first frame (plot IIb in Figure
5 and images IIc, IId, IIg in Figure 3).

DNC1 is characterized by cell boundaries with significant
curvature, variable signal, and close proximity to each other
(row III in Figure 3). As a consequence, SN0 frequently lost
track of the true boundaries (image IIIe of Figure 3), resulting
in Eδ > 6. In contrast, the addition of SIFT flow in SN1 helped

http://ieeexplore.ieee.org
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to avoid this problem, allowing SN1 to achieve a more compet-
itive Eδ score. The high-curvature boundaries also negatively
affected the performance of EG on Eδ , because this method
represents each cell as a polygon and thus poorly approximates
non-linear boundaries. At the same time, the variable signal
resulted in frequent segmentation errors, causing EG and RF
to lose a significant number of cells (images IIIc, IIId of Figure
3). By the final frame, both retained fewer than 25% of cells
originally in the embryo. MT was robust to these problems
that afflicted reference methods and maintained a consistent
Eδ < 4 and Lc < 10% (row III of Figure 5).

DVF1 is characterized by wide boundaries, few background
artifacts, and small boundary deformations (row IV in Figure
3). Edges are clearly defined and segmentation performed
almost perfectly. Thus, all evaluated algorithms performed
almost perfectly (row IV in Figure 5). There was a tendency in
SN0 and SN1 to disregard sharp corners (images IVe, IVf of
Figure 3), but the relatively wide membranes still allowed the
contours to accurately trace out each cell for both methods.

One outstanding feature of our method is its robustness.
EG and RF have the disadvantage that tracking accuracy
completely relies on the quality and consistency of a general-
purpose image segmentation algorithm. This resulted in poor
performance on Lc, especially on DDC4 and DNC1 (Lc >
50% by frame 101 for both data sets). SN0 and SN1 have the
disadvantage of curves sometimes detaching from edges by a
wide margin. This resulted in notably worse performance on
Eδ compared to that of MT on DDC1, DDC4, and DNC1.
Our algorithm is robust to all these problems, resulting in
superior region tracking while accurately retaining almost all
cells for the entire duration of tracking. On all four data sets,
our method exhibited Eδ < 4 and Lc < 17% (Figure 5).

Our algorithm is also robust to the choice of parameters.
Whereas the parameters of reference methods were optimized
to each data set, we used the same parameters for all data
sets, even though each data set exhibited significantly different
SNR, membrane shapes, and intensity profiles. Section III-F
demonstrates the robustness of our method’s parameters fur-
ther through a quantitative sensitivity analysis.

F. Parameter Selection and Sensitivity

This section presents an empirical evaluation of the sensi-
tivity of tracking-result quality to parameter values for our
method, aiming to develop heuristics for parameter value
selection. We started with a set of reference parameter settings
and tracked the DDC4 data set several times, each time varying
one parameter while keeping all others fixed. We experimented
with two different reference parameter settings. Figures 6 and
7 illustrate the results of our investigation.

1) ω and ℓ: First, we suggest that the size of vertex and
edge windows, tuned by ω and ℓ, respectively, should not be
too small. This is reasonable because smaller windows may be
blind to large displacements and are more likely to be biased
by noise in their limited supports. On the other hand, windows
that are too large may incorrectly include external structures
in their supports as would happen, for instance, when nearby
edges have overlapping windows (Figure 6).
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Fig. 6. Sensitivity analysis for DDC4 using the Eδ measure, by varying one
parameter (rows) while keeping all others fixed. Results from two parameter
settings are shown: (a) the parameter setting used for comparison with other
algorithms in Section III-E and (b) another setting with good performance
but smaller vertex and edge window support. Plots for the Lc measure are
omitted because their changes were negligible with respect to all parameters
in this figure. Each data point represents the error at the last tracked frame
(101).

2) α: We see that α < 1 generally exhibited much better
performance, which is reasonable because edge costs provide
important information on the graph deformations (Figure 6).
We recommend selecting 0.3 < α < 0.7 for consistently good
performance regardless of the values of the other parameters.
Nevertheless, we recommend a lower α within this range for
images with weaker vertex signal and stronger edge signal,
and a larger α within this range when the opposite is true.

3) ρ: The distance ρ between control points should also
be neither too large nor too small (Figure 6). This reflects
the fact that a ρ that is too small (too many control points)
increases the degrees of freedom on the edge shape, which
both unnecessarily inflates the size of the tracking optimization
problem and allows the edge spline to overfit to the noise
neighboring the membrane junctions. On the other hand, a
ρ that is too large (too few control points) over-constrains
the shape of the edge, preventing the spline from accurately
modeling finer features of the membrane junction. However,
while 10 < ρ < 20 is optimal for DDC4, the best value for a
particular data set ultimately depends on its image resolution
and the boundary shape of its tracked objects.

4) hminima: We also investigated the effects of initial
segmentation quality on tracking-result quality by evaluating
tracking performance with respect to varying the hminima
parameter introduced in Section III-B. The results in Figure
7 quantify the natural notion that good model initialization
leads to good tracking. hminima values between 7 and 11
achieved the best results on both measures, corresponding
to segmentations that are neither over-segmented nor under-
segmented. Furthermore, we note that hminima = 11, the
value selected a priori to yield the visibly best results for this
data set, corresponded well to a competitive tracking result.

This analysis also provides quantitative evidence for the in-



0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2016.2521653, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 10

IEEE TRANSACTIONS ON MEDICAL IMAGING 1

(I
)
E �

(I
I)

L
c

(a) !=21, `=19, ↵=0.3, ⇢=10 (b) !=11, `=15, ↵=0.4, ⇢=10

Fig. 7. Sensitivity analysis of tracking performance to segmentation quality on
the DDC4 data set, by plotting the effects of varying the hminima parameter
on (I) δ-region error and (II) % lost cells. The two columns display results for
tracking trials with two different parameter settings (same as those in Figure
6). Each data point represents the error at the last tracked frame (101). The
dotted, horizontal line in each plot (all near 0 error) corresponds to the error
of tracking with a manually segmented first frame for initialization.

tuition that our algorithm may perform much better if its graph
model is initialized from a ground truth segmentation of the
first frame, rather than from the potentially imperfect results
of an automated segmentation algorithm. Indeed, the dotted,
horizontal line in each plot of Figure 7, which correspond to
error in tracking with a manually segmented first frame for
initialization, is noticeably lower than all other data points
in its plot (all of which correspond to error in tracking with
watershed-segmented first frames).

G. Edge Contributions

An important novelty of our method is the use of edge
information to improve the tracking of vertices. In this section,
we provide additional insight into how the addition of edge
costs leads to better tracking compared to tracking using vertex
costs alone (see Figure 8).

Edges help guide the vertices to their correct positions,
especially when vertices have very little signal or the image
contains significant deformations between frames that confuse
the vertex tracker. Tracking with only vertex cost (α = 1)
results in vertices that drift along edges, eventually preventing
the correct tracking of deforming membranes. Thus, the locally
optimal solution computed for each vertex is not the globally
optimal solution that minimizes the overall graph cost of the
system. On the other hand, α < 1 (the instance with α = 0.4
is displayed in Figure 8) encourages the vertices to converge
to an optimal solution according to a more global criterion in
which both vertices and edges are correctly outlined.

H. Computation Time

Table II presents the time needed to track each data set,
recorded using MATLAB R2015a on Ubuntu 14.04.3 LTS
running on twelve Intel Xeon processors clocked between
2.40-2.66 GHz. We found that RF took the most time on
DDC1, DNC1, and DVF1. SN1 took the most time on
DDC4. The computation time for our method (MT), while
less than the maximum for each data set, was in a comparable
range. Profiler results for our method indicate the significant
number of image interpolations using the MATLAB function
interp2 to be our primary bottleneck. As a consequence, our

1

.

Fig. 8. Improved tracking from edge cost, illustrated on the same cell as
in Figure 2, in frame 51. The solid circles overlaid on the images represent
tracked vertices, and curves extending from the vertices represent tracked
edges. Left: α = 1. Note the significant vertex drift. The solid arrow points
to a specific tracked vertex location and the dashed arrow points to the true
location of that vertex. Right: α = 0.4. The vertices are tracked correctly,
with the solid arrow pointing to the (same) true and tracked vertex location.
(Best viewed when magnified.)

TABLE II
RUNNING TIME (IN SECONDS) FOR DIFFERENT ALGORITHMS (COLUMNS)

ON EACH DATA SET (ROWS).

IEEE TRANSACTIONS ON MEDICAL IMAGING 1

Data set EG RF SN0 SN1 MT
DDC1 162 38052 1799 8139 18162
DDC4 136 17746 22264 22548 15685
DNC1 33 9380 4610 5457 8951
DVF1 161 61482 1097 2987 14917

method takes significantly less time to track on down-sampled
versions of the data sets.

I. Limitations of Our Approach

Our algorithm can handle the disappearance of cells (such
as through apoptosis), but not cell divisions. However, a wider
variety of graph topology changes can be cleanly addressed
by improving the UPDATEGRAPHTOPOLOGY function in Al-
gorithm 1. Another limitation is that because the algorithm
performs a local search, it may fail upon large, sudden changes
in the intensity profile of the image.

IV. CONCLUSION

We develop a robust, optionally fully-automatic method
that utilizes least-squares photometric cost functions on a
deformable graph model to track epithelial sheets with cells
separated by a network of membrane junctions. We demon-
strate consistently superior performance compared to four
previously published methods on four heterogeneous data sets.
This method may be an important tool especially in develop-
mental biology by helping to characterize these commonplace
biological structures from the tissue to sub-cellular level.

Future work entails making our method more efficient for
quick results on a personal computer and supporting a greater
variety of graph topology changes to model biological events
such as cell divisions. Our proposed method is not specific to
biological membranes, and we are interested in extending our
graph tracking methodology to other domains.
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