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Abstract— Unwanted friend requests in online social networks
(OSNs), also known as friend spam, are among the most evasive
malicious activities. Friend spam can result in OSN links that do
not correspond to social relationship among users, thus pollute
the underlying social graph upon which core OSN functionalities
are built, including social search engine, ad targeting, and OSN
defense systems. To effectively detect the fake accounts that act
as friend spammers, we propose a system called Rejecto. It stems
from the observation on social rejections in OSNs, i.e., even well-
maintained fake accounts inevitably have their friend requests
rejected or they are reported by legitimate users. Our key insight
is to partition the social graph into two regions such that the
aggregate acceptance rate of friend requests from one region to
the other is minimized. This design leads to reliable detection of a
region that comprises friend spammers, regardless of the request
collusion among the spammers. Meanwhile, it is resilient to other
strategic manipulations. To efficiently obtain the graph cut, we
extend the Kernighan-Lin heuristic and use it to iteratively detect
the fake accounts that send out friend spam. Our evaluation
shows that Rejecto can discern friend spammers under a broad
range of scenarios and that it is computationally practical.

I. INTRODUCTION

Unscrupulous users increasingly find Online Social Net-

working (OSN) platforms as lucrative targets for malicious

activities, such as sending spam and spreading malware. The

profitability of such activities and the fact that a large portion

of the OSN communication takes place over symmetric social

links (e.g., Facebook) motivate attackers to connect to real

users. In particular, attackers leverage the open nature of OSNs

and send to legitimate users unwanted friend requests, also

known as friend spam [10], [30].

Friend spam can result in OSN links that do not corre-

spond to social relationship among users, thus it enables the

pollution of the underlying undirected social graph. Because

OSN providers build on social graphs their core functionalities

that often assume a social graph solely consists of links

representing social trust of user pairs, the consequences of

falsely accepted requests by unsuspected users are severe. In

particular, the false OSN links resulting from friend spam can

compromise the accuracy of social ad targeting [22], [31] and

search [5], [8], and the privacy of shared content by users.

Moreover, friend spam can be used to undermine the ef-

fectiveness of defense systems that are either built upon [14],

[17], [34] or take input signals [33] from social graphs. For

example, the additional OSN links that fake accounts (called

Sybils) obtain via friend spam can enable part of them to evade

the detection of social-graph-based defense systems [14], [17],

[34]. This is because these approaches bound the number of

undetected fake accounts to the number of OSN links between

Sybils and real users, e.g., O(log n) accounts per link [14],

[34], where n is the total number of users.

Despite major advances in the suppression of malicious

activities and accounts [10], friend spam appears to be more

evasive than regular spam [6]. OSN users still experience

friend spam on a frequent basis [3], [9]. One of the suggested

remedies has been to restrict requests only to friends of friends.

This, however, subtracts from the openness of the OSN.

We therefore aim to answer the question: “how can we

design a robust system to throttle friend spam in OSNs?” Our

hypothesis is that we can uncover the fake accounts (Sybils)

that indiscriminately send out friend spam in symmetric OSNs

(e.g., Facebook and LinkedIn) by leveraging the rejection of

unwanted friend requests. The insight is that although some

OSN users accept friend requests from unknown users, cau-

tious users reject, ignore, or report them to the OSN providers.

The attackers behind the spamming accounts usually have

limited knowledge about the degree of their targets’ security

awareness, due to the massive scale of today’s OSNs and

their significant efforts in protecting the online privacy and

safety of the users. As a result, the spamming accounts

inevitably receive a significant number of social rejections

from legitimate users. We confirmed this in our study on fake

Facebook accounts in the wild (§II). In contrast, friend requests

from legitimate users are only sporadically rejected because

they are often sent to people the senders know [33].

We designed and implemented a system called Rejecto. It

exploits the readily available social rejections in OSNs and

systematically uncovers the fake accounts that act as friend

spammers. Rejecto monitors the friend requests sent out by

users and augments the social graph with directed social

rejections. Once an OSN detects the fake accounts used for

friend spam, it can prevent them from sending requests in the

future. The goal of our system is to be able to effectively

identify fractions of users that participate in friend spam with

a high recall and very low false positives.

Although using social rejections to combat friend spam

is intuitive, designing a robust scheme that is strategy-proof

poses an algorithmic challenge. First, the spamming fake

accounts can attempt to evade the detection by collusion.

Specifically, they can accept each other’s requests, decreasing

the fraction of the rejected requests of each individual account

to that of a legitimate user’s. Second, a part of the fake ac-

counts can mimic legitimate users by rejecting friend requests

from other fake accounts. By doing so the attacker sacrifices

his accounts that got the rejections. Yet, he whitewashes his

rejecting accounts because they now reject requests in the same

way legitimate users do. We call this strategy self-rejection.

Previous work [15], [32] took request rejections into account



for fake account detection. Like Rejecto, they also rely on

the premise that legitimate users reject a portion of unwanted

friend requests. However, these designs [15], [32] did not

fully utilize the power of social rejection and were not made

resilient to the collusion and self-rejection attack strategies.

Similarly, Machine Learning classifiers that use request rejec-

tions [33] are usually based on individual user features, thus

they suffer from manipulation.

Rejecto systematically addresses the above challenges. To

be resilient to collusion, it formulates the friend spammer de-

tection as a graph partitioning algorithm (§IV-A). Specifically,

while the portion of the accepted friend requests among legiti-

mate accounts is high, the aggregate acceptance rate of all the

requests sent from fake to legitimate accounts is substantially

lower, regardless of the acceptance of the requests among the

fake accounts. Therefore, Rejecto extends the Kernighan-Lin

approach [23] and uses it to partition the social graph into two

regions such that the aggregate acceptance rate of the requests

from one region to the other is minimized. We then declare the

accounts in the region with the minimum aggregate acceptance

rate as suspicious. Because this aggregate acceptance rate is

independent of the requests and links among fake accounts,

an attacker cannot arbitrarily boost this rate by having his

accounts befriend each other.

To mitigate the impact of the self-rejection attack strategy

and cope with the existence of multiple independent groups of

fake accounts, we apply the graph partitioning multiple times

and iteratively identify fake-account groups after pruning the

detected ones from the social graph (§IV-E).

We implemented Rejecto on Spark [36], an efficient in-

memory large-data processing platform. We evaluate Rejecto

through extensive simulations (§V) on real social graphs, and

we show that it can withstand friend spam under a broad range

of scenarios and that it is resilient to attack strategies. As a

demonstration of Rejecto’s effectiveness on improving OSN-

related services, we applied it for an in-depth defense against

OSN fake accounts in combination with existing social-graph-

based schemes (§II-B, §V-D).

In summary, this work makes the following contributions:

• We formulate the detection of the fake accounts that act

as friend spammers as a graph partitioning problem. To the

best of our knowledge, this is the first formulation that makes

a friend-spam detection system resilient to attack strategies.

• To efficiently partition a rejection-augmented social graph,

we transform to a set of partitioning problems, each with a

linear objective function, and we extend the Kernighan-Lin

approach [23] to solve them.

• We have implemented a scalable prototype of Rejecto that

can process multimillion-user social graphs on an EC2 cluster.

Our efficiency analysis indicates that the prototype can scale

up to OSNs with hundreds of millions of users, provided that

the aggregate memory of the cluster suffices.

II. MOTIVATION

We present a study of fake Facebook accounts we obtained

from the underground market. This study reveals that social re-
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Fig. 1: The numbers of friends and pending requests on purchased
accounts. These accounts have a significant fraction of pending requests.

jections are a natural byproduct of friend spam, and motivates

us to use them to trace and defend against the spammers.

A. Social rejections by legitimate users

Fake accounts are incentivized to obtain OSN links to real

users. However, those that aggressively befriend legitimate

users in symmetric OSNs trigger social rejections in the form

of rejected, ignored, or reported as abusive friend requests.

Since user reports are only accessible by OSN providers, we

focus our study on the ignored and rejected friend requests.

Study of purchased Facebook accounts. We conducted a

study of well-maintained fake Facebook accounts from the

underground market [1], [2] to understand the social rejections

in the real world. We purchased fake Facebook accounts

from workers on Freelancer [2] for this study. Because our

purchases solely played the role of collecting fake accounts

that are for sale and nevertheless available in the underground

market, the Duke University Institutional Review Board (IRB)

informed us that this study does not require a formal approval

process. The fake accounts in the underground market are

priced according to their lifetime, the number of friends, the

number of profile pictures, and other factors. To investigate the

trace of social rejections on live fake accounts, we explicitly

required that each of the fake accounts we purchase should

have “>50 real US friends”. In this study, we use 43 purchased

accounts, each of which is at least one year old. They are

purchased at different vendors, and in total have 2804 friends

and 2065 pending requests, as shown in Figure 1.

The number of friends our purchased accounts have on

Facebook is only an upper bound on the number of real users

that they successfully befriended. This is because part of the

delivered Facebook friends on purchased fake accounts may

be also fake, although we required real-user friends when

we placed our orders. To this end, we studied the associated

attributes of the friends on our purchased accounts. Figure 2

shows the CDF of the friends with respect to their degrees in

the social graph. We can see that some of the friends have

a social degree >1000 each, indicating that they are either

careless Facebook users or abusive fake accounts. Figure 3

and Figure 4 shows the CDFs of the friends with respect to

the posts on their walls and the photos they have uploaded.

A large portion of the friend users on our purchased accounts

are quite active, as they have posted on walls and uploaded
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Fig. 2: CDF of the friend accounts of our pur-
chased accounts, with respect to their degrees
on the social graph.
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Fig. 3: CDFs of the friend accounts of our
purchased accounts, with respect to the num-
ber of posts, and to the numbers of the
comments and likes on the posts, respectively.
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Fig. 4: CDFs of the friend accounts of our
purchased accounts, with respect to the num-
ber of photos, and to the numbers of the
comments and likes on the photos, respectively.

photos, and they got comments and likes from their friends.

Again, we cannot determine if the friends of a friend are fake

or not. However, we do observe a part of the friends of our

purchased accounts form full-mesh communities, which might

indicate that they can be fake.

Fake accounts receive rejections. We examine the pending

friend requests from each purchased account using Facebook

APIs. Figure 1 shows the numbers of friends and pending

requests on each account. Although these well-maintained

accounts have many OSN links and sufficiently completed

profiles, we can see that they all have a significant number

of pending requests. Specifically, the fraction of pending

requests of each user ranges from 16.7% to 67.9%. This

indicates that legitimate OSN users tend to reject requests

from unknown and possibly fake users. In addition, a recent

study on RenRen [33] also reported excessive rejections on

fake accounts, but focusing on those that had been caught.

Non-manipulability of social rejection towards innocent

users. In a symmetric OSN, a social rejection is a reliable

signal, which is guarded by a feedback loop between two

different users, the sender and the receiver. A user is able

to signal a social rejection only if she received an unwanted

friend request. That is, a legitimate user rarely receives any so-

cial rejections if she never sends out spam requests. Therefore,

a group of malicious users cannot collude to give an arbitrary

number of social rejections to another group of victims who

never sent to them friend spam. If such manipulation was

effective, it would discredit the defense scheme. This is in

contrast to the negative ratings in other online services such

as YouTube, where users are allowed to rate arbitrarily.

B. Defense in depth with social-graph-based approaches

A further motivation of our work is to build an in-depth

defense against Sybil attacks in OSNs that combines Rejecto

with existing social-graph-based approaches. These existing

schemes uncover clusters of OSN fake accounts that have a

limited number of links to real users [14], [17], [34]. Mean-

while, Rejecto prevents fake accounts from obtaining a large

number of OSN links by detecting those friend spammers.

Thus, they can constitute a defense in depth. After effectively

blocking friend spammers and pruning their OSN links from

the graph, a large portion of the clusters of fake accounts with

a limited number of OSN links to real users can be uncovered

Attack edge

Legitimate users Fake accounts

Social rejection

Fig. 5: Legitimate users, fake accounts, and social rejections in an
OSN under friend spam. Fake accounts can form distinct groups. The
aggregate acceptance rate of requests from a group of friend spammers
to legitimate users is low. A fake-account group may choose not to send
out friend spam.

by traditional social-graph-based approaches. We use OSN

Sybil defense as a demonstration of Rejecto’s effectiveness

on improving existing OSN functionality (§V-D).

III. MODELS AND GOALS

We introduce our system model, threat model, and goals.

A. Models

System model. We augment the social graph with directed

social rejections, which we call an augmented social graph.

We model this graph as G = (V, F, ~R), where V is the user

set in an OSN, F represents the OSN links among users

{(u, v)}, and ~R represents the social rejections {〈u, v〉}. We

consider OSN links bidirectional whose establishment requires

mutual agreement as in the real world. The social rejections

are directional: a rejection edge 〈u, v〉 represents a rejection of

user v’s request by user u or a report by user u that flags v’s

request as abusive. As in previous work [14], [17], [34], [35],

we refer to the OSN links that straddle the boundary between

fake accounts and legitimate users as attack edges (Figure 5).

The user set V consists of two disjoint parts: a) L: the subset

of legitimate users, and b) M : the subset of fake accounts

controlled by attackers, where V = L ∪ M . For any two

disjoint user subsets X and Y (X ∩ Y = ∅), where Y can

be X̄ (X̄ = V −X), we define the following:

Group friendship set F (X,Y ): the set of friendships each

of which connects a user in X with another user in Y .

F (X,Y ) = {(u, v)|u ∈ X, v ∈ Y }. F (X,Y ) = F (Y,X)
due to the reciprocation of social connection.



Group rejection set ~R〈X,Y 〉: the set of rejections casted by

users in X to users in Y . ~R〈X,Y 〉 = {〈u, v〉|u ∈ X, v ∈ Y }.

Aggregate acceptance rate ~AC〈X,Y 〉: the aggregate accep-

tance rate of the friend requests from X to Y . ~AC〈X,Y 〉 =
|F (Y,X)|

|F (Y,X)|+|~R〈Y,X〉|
. This rate only considers the OSN links and

rejections across the user sets.

Threat model. Fake accounts send out friend spam in the

hope of gaining additional OSN links to legitimate users.

Meanwhile, they may seek to hide themselves or even dis-

guise as legitimate users. We consider two attack strategies

which we believe form the basis of the spectrum of various

attacks: collusion and self-rejection. In a collusion attack, fake

accounts arbitrarily improve the acceptance rate of the requests

of each individual by sending and accepting requests among

themselves. Using the self-rejection strategy, fake accounts

mimic legitimate users by rejecting requests from others.

Although fake accounts cannot manipulate the requests from

legitimate users, they can choose to reject requests from

themselves and whitewash the rejecting accounts.

B. Goals

Our aim is to use social rejection to defend against the fake

accounts that send out friend spam. We have two main goals:

Accuracy. Rejecto should be able to identify the fake accounts

that send out unwanted requests to legitimate users but do

not get a large portion accepted, irrespective of the request

acceptance among the fake accounts. Rejecto must remain

effective even under various strategic attacks. Meanwhile, Re-

jecto should not flag legitimate users with sporadic rejections.

Efficiency. Today’s OSNs serve billions of users. Our system

should be able to efficiently detect friend spammers and enable

large OSNs to protect their services and users.

IV. SYSTEM DESIGN

We now describe the design of Rejecto. We first provide an

overview of the approach.

A. Overview

Rejecto is based on the observation that fake accounts send-

ing out friend spam inevitably receive a significant number of

social rejections from the OSN users they attempt to connect

to. As a result, the excessive social rejections lead to a low

aggregate acceptance rate of the friend requests from fake to

legitimate accounts.

Our key insight is that the low aggregate acceptance rate

of the spam requests can enable us to reliably differentiate

the spammers from other users. Meanwhile, we build into Re-

jecto’s design the resilience to strategic befriending behavior

by spammers. In order to be resistant to collusion attacks,

Rejecto augments the social graph with directed rejections and

formulates the detection of friend spammers as the problem of

partitioning an augmented social graph into two regions, such

that the aggregate acceptance rate of the requests from one

region to the other is minimized. We reduce to this detection

problem from the minimum ratio cut in multi-commodity

flow [12], [25], which is known to be NP-hard [20]. We

extend a widely-used optimization heuristic, the Kernighan-

Lin (KL) algorithm [23], and use it to accurately uncover the

fake accounts used for friend spam. To cope with disjoint fake-

account groups and the fake accounts mimicking real users by

rejecting other Sybils, our system applies KL over multiple

rounds, and iteratively identifies groups of friend spammers

and their associated links and rejections in the social graph.

By detecting friend spammers and removing the OSN links

yielded by friend spam, Rejecto can sterilize the social graph

upon which many OSN functionalities rely. In particular,

after pruning the attack edges of friend spammers, Rejecto

can substantially strengthen social-graph-based Sybil defenses,

constituting a significant component of an in-depth Sybil

defense system (§II-B).

B. The hardness of the problem

Because the aggregate acceptance rate of the friend requests

from a fake-account group to legitimate users is low, we for-

mulate the spammer/legitimate cut as the minimum aggregate

acceptance rate (MAAR) cut in the augmented social graph.

Suppose M ′ (M ′ ⊆ M ) is the group of fake accounts whose

requests yield the lowest acceptance rate, we have

|F (M̄ ′,M ′)|

|F (M̄ ′,M ′)|+ |~R〈M̄ ′,M ′〉|
≤

|F (X̄,X)|

|F (X̄,X)|+ |~R〈X̄,X〉|
,

that is, ~AC〈M ′, M̄ ′〉 ≤ ~AC〈X, X̄〉, for every X ⊂ V . By

solving this MAAR problem, we identify the fake-account

group M ′. To uncover all friend spammers, we iteratively

identify groups of fake accounts by repeatedly solving the

MAAR problem and pruning the identified groups from the

graph (§IV-E).

The MAAR problem is closely related to the MIN-RATIO-

CUT problem [20]. By constructing a linear cost reduction

from the MIN-RATIO-CUT problem, we show that it is NP-

hard to find a MAAR cut in a social graph.

A primer on the MIN-RATIO-CUT problem. The MIN-

RATIO-CUT problem is defined in the context of multi-

commodity flow. Let G = (V,E, c) be an undirected graph,

where each edge e (e ∈ E) has a non-negative capacity

c(e). There is a set of k commodities { ~K1, ~K2, . . . , ~Kk}.

Each commodity ~Ki is defined by a tuple ~Ki = 〈si, ti, di〉
(si, ti ∈ V ), where si and ti are the source and the sink, and

di is a positive demand. Given a cut C = (U, Ū) such that

U ∪ Ū = V and U ∩ Ū = ∅, the capacity of the cut is the sum

of the capacities of the cross-partition edges. The cut ratio

is the capacity of C divided by the sum of demands of the

cross-partition commodities. Therefore, the min ratio cut is a

cut C′ = (U ′, Ū ′) that minimizes:

OMR(U) =

∑
e∈E∩(U,Ū) c(e)

∑
〈si,ti〉∈〈U,Ū〉∪〈Ū,U〉 di

Accordingly, the ratio of cut C′ is called the minimum cut

ratio. The MIN-RATIO-CUT problem is NP-hard [20].

Reduction from the 2-approximation MIN-RATIO-CUT

problem. To detect friend spammers, we search for a partition



of the user set C∗ = 〈U∗, Ū∗〉 with the minimum aggregate

acceptance rate of the friend requests from U∗ to Ū∗.

U∗ = arg min
U⊂V

|F (Ū , U)|

|F (Ū , U)|+ |~R〈Ū , U〉|

Minimizing the aggregate acceptance rate is equivalent to

minimizing the aggregate friends-to-rejections ratio
|F (Ū,U)|

|~R〈Ū ,U〉|
,

which we denote as OMAAR(U). We then reduce to our friend

spammer detection problem from the 2-approximation MIN-

RATIO-CUT problem, in which the edge capacities and the

commodity demands are constants.

Suppose we have a MIN-RATIO-CUT instance G =
(V,E, c) with commodities { ~K1, ~K2, . . . , ~Kk}, where the

capacity of an edge and the demand of a commodity are

the same constant. We construct a corresponding MAAR

instance in a social network (V, F, ~R), where F = E and
~R = { ~K1, ~K2, . . . , ~Kk}. The MIN-RATIO-CUT instance is

slightly different from the MAAR instance, in that the former

counts the commodities in both directions across partitions,

whereas MAAR considers only the rejections from legitimate

users to Sybils. We now show that the optimal value of the

MAAR instance is within a factor of two of that of the MIN-

RATIO-CUT instance.

We compare the objectives of these two instances. We have

OMR(U) = |F (Ū ,U)|

|~R〈U,Ū〉|+|~R〈Ū,U〉|
and OMAAR(U) = |F (Ū,U)|

|~R〈Ū ,U〉|
.

For any cut C = (U, Ū), let U be the partition that has

the larger number of incoming rejections, i.e., |~R〈Ū , U〉| ≥
1
2 (|

~R〈U, Ū〉| + |~R〈Ū , U〉|). Then OMAAR(U) ≤ 2OMR(U)
holds. As a result, after traversing all possible cuts, we

have min{OMAAR} ≤ 2min{OMR} (by contradiction). This

indicates that the optimal value of the MAAR instance is larger

than that of the MIN-RATIO-CUT, but at most twice as large.

Therefore, the optimal value of the MAAR problem is

always within a factor of two of the ratio of the MIN-RATIO-

CUT. Meanwhile, the MIN-RATIO-CUT problem is known to

be NP-hard. The best existing MIN-RATIO-CUT algorithms

achieve only an approximation factor of O(log |V |) [28].

C. The Kernighan-Lin algorithm

We use the Kernighan-Lin (KL) approach [23], one of the

most effective heuristic algorithms for graph bisection. KL

bipartitions an undirected graph into balanced parts, while

minimizing the number of edges across parts. In particular, on

an undirected graph G = (V,E) KL seeks an approximation

of the optimal cut C = (U, Ū), such that |U |/|V | ≃ r
(0 < r < 1) and |{(u, v)|(u, v) ∈ E∩(U×Ū)}| is minimized.

KL is a local optimization heuristic. It is based on the

observation that one can always obtain the desired partition

from an initial one by interchanging a particular subset of

nodes from each part. Figure 6 illustrates that a partition can

be refined by switching the misplaced nodes.

KL improves the partition quality by iteratively interchang-

ing node sets. Within each iteration, it interchanges a pair of

node sets that are sequentially selected in a greedy fashion

according to the reduction of cross-part edges. This reduction

U V-U

…

…

…

…

…

…

Fig. 6: An illustration of the Kernighan-Lin algorithm that improves a
partition by interchanging misplaced nodes.

is called gain. Specifically, the selection of node sets to

be interchanged consists of two steps. First, it sequentially

identifies a series of node-pair interchange operations each of

which yields the largest gain if its predecessors are applied.

In this series, each subsequence starting from the beginning

(prefix) indicates a candidate pair of interchanging node sets.

Second, KL finds the interchange prefix that leads to the

highest cumulative reduction of cross-part edges. It swaps the

pair of node sets specified by the selected interchange prefix,

generating an improved partition. KL then initiates the next

iteration with this new partition it has obtained. This procedure

repeats until no improvement can be made.

To enable efficient lookup for the node with the largest

gain during the optimization, Fudiccia et al. [19] improved

KL with the use of an array of linked lists, called a bucket

list, which indexes each node according to its potential gain on

the cross-part edge reduction (see [11] for details). In practice,

since KL only requires a very small number of iterations, this

improvement results in an O(|V |) algorithm [19].

Alternative techniques. There are off-the-shelf approxima-

tion algorithms [28] for the MIN-RATIO-CUT problem, with

an approximation factor of O(log |V |). We do not adopt them

for large OSNs due to two shortcomings we perceived empir-

ically: a) the approximation factor O(log |V |) of the cut ratio

is not sufficient, which may cause substantial deviation from

the optimal partitioning; b) the complexity of the algorithms

indicates that it can be difficult for them to handle graphs

with millions or billions of nodes. These algorithms [28] have

a complexity of Õ(|V |2), where the Õ(·) notation suppresses

poly-logarithmic factors. In addition, they do not have parallel

implementation, making them hard to scale to today’s OSNs.

D. Extending KL to rejection-augmented social graphs

Rejecto aims to find a partition of the entire user set

C∗ = 〈U∗, Ū∗〉 that minimizes the friends-to-rejections ratio
|F (Ū,U)|

|~R〈Ū,U〉|
. We cannot directly apply KL to our rejection-

augmented social graph, because KL is designed to minimize

the cross-region edges in an undirected graph, rather than

the ratio of different types of edges. Therefore, we transform

the objective of minimizing the friends-to-rejections ratio and

extend KL to the rejection-augmented social graphs.

The core of our transformation is a conversion of our

problem targeting a ratio objective to a set of partitioning

problems each with a linear objective function that is compat-

ible with KL. We then extend the KL algorithm to solve each

derived problem. Specifically, instead of directly minimizing



Algorithm 1 ExtendedKL (G(V, F, ~R), k, initPartition)

1: p = initPartition

2: repeat

3: // Initiate the switching gain for each node

4: nodeGainList = BucketList.init(p)

5: nodeSwitchingSeq = ∅
6: p tmp = p // Used to get the node-switching series

7: while nodeGainList 6= ∅ do

8: u = nodeGainList.getMaxGainNode()

9: nodeSwitchingSeq.add(u)

10: p tmp.switch(u)

11: nodeGainList.delete(u)

12: // Update the gain of u’s each neighbor according

13: // to the objective |F (Ū , U)| − k × |~R〈Ū , U〉|

14: nodeGainList.update(neighbor(u), p tmp)

15: end while

16: // Get the prefix of nodeSwitchingSeq with the largest

17: // positive decrement in |F (Ū , U)| − k × |~R〈Ū , U〉|

18: prefix = nodeSwitchingSeq.getMaxGainPrefix()

19: p.switch(prefix)

20: until prefix == ∅
21: return p

the friends-to-rejections ratio
|F (Ū ,U)|

|~R〈Ū,U〉|
, we examine a family

of cuts that minimize |F (Ū , U)| − k × |~R〈Ū , U〉|, where k is

a positive parameter. The cut among the family that yields the

lowest friends-to-rejections ratio is the solution (Theorem 1).

We then extend the KL approach to solve each partition

problem that minimizes |F (Ū , U)| − k × |~R〈Ū , U〉|.

Theorem 1: In a rejection-augmented social graph, if the

cut C∗ = 〈U∗, Ū∗〉 is the minimum aggregate acceptance rate

(MAAR) cut, and
|F (Ū∗,U∗)|

|~R〈Ū∗,U∗〉|
= k∗ (k∗ > 0), C∗ is the optimal

solution to the bipartition problem that minimizes |F (Ū , U)|−
k∗ × |~R〈Ū , U〉| (see [11] for proof).

Theorem 1 indicates that one can always find the MAAR

cut (with the minimum friends-to-rejections ratio) by solving

the above described family of problems for varying values of

k. To approximate the aggregate friends-to-rejections ratio k∗

of a MAAR cut, we iterate k through a geometric sequence,

and pick the one that yields the lowest aggregate ratio.

KL Extension. We now describe how the KL approach

can be extended to solve the partition problem minimizing

|F (Ū , U)|−k×|~R〈Ū , U〉|, given a value for k. Our approach

is to unify the friendship edges and the rejection edges by

assigning them different weights according to the objective

function, i.e., weight 1 and weight −k for friendship and

rejection, respectively. This conversion translates the objective

into minimizing the sum of weight of the cross-region edges.

Thus, it enables an extension of KL with edge weights to solve

the problem. Algorithm 1 shows the pseudocode of our KL

extension. Unlike in the graph partitioning problem that the

original KL copes with, we do not assume prior knowledge

on the part sizes of a partition. Thus, we replace the node-pair

interchanging in KL with single-node switching to allow the

change of part sizes. The bucket list dynamically indexes each

node based on its potential gain of switching to the other part

of the partition. To ensure a desirable approximation of the

optimal cut with a ratio k∗, we iterate k through a geometric

sequence with a certain scale factor.

E. Iteratively detecting fake-account groups

Fake accounts can form multiple independent groups. These

groups may have few OSN links and rejections between them

(Figure 5). In such cases, a single run of the extended KL

algorithm catches only a few groups if the aggregate accep-

tance rates of requests from the rest of the fake groups are not

equally low. To make it worse, a group of fake accounts can

attempt to mimick real users by rejecting accounts from other

groups controlled by the same attacker, i.e., by employing self-

rejection. In this way, attackers can whitewash a portion of

their accounts by fabricating a cut within the collective of their

fake accounts and making this cut’s friends-to-rejections ratio

even lower than the global friends-to-rejections ratio between

the legitimate and the fake accounts, as shown in Figure 7. As

a result, a scheme simply seeking the MAAR cut can miss the

group of the rejecting fake accounts.

To address this challenge, Rejecto iteratively runs the ex-

tended KL to identify and cut off spammer groups from the

graph until it has detected as many friend spammers as the

OSN has estimated that exist (by inspecting sampled users [7],

[14]). Attackers cannot change the friends-to-rejections ratio

of the global spammer/legitimate cut, but they can craft a cut

with a ratio lower than that within their fake accounts. In such

cases, Rejecto first finds the lower ratio cuts within the fake

accounts, and detects the part of the fake accounts that receive

a large number of rejections due to the crafted low ratio. It

then prunes these accounts with their links and rejections from

the graph, and continues to find the next lowest friends-to-

rejections ratio cut. This process repeats until we find the

global spammer/legitimate cut.

Other termination conditions. In practice, besides the num-

ber of the estimated fake accounts, other conditions are also

available to decide on the proper termination of the iterative

cut detection procedure. Because we detect the MAAR cut of

a residual graph in each round, multiple rounds of MAAR cut

detection yield an ordered list of suspicious-account groups,

among which those with a low aggregate request acceptance

rate are uncovered first. As a result, an OSN provider can set

an appropriate aggregate acceptance rate threshold (e.g., an

estimate of the acceptance rate of normal users) and use it to

terminate the iterative detection procedure.

F. Reducing false positives

The extended KL approach approximates the MAAR cut

by interchanging nodes. Due to the large search space in a

social graph, it might be stuck in a local minimum ratio cut,

if that cut ratio is small. Although such small ratio cuts are

rare among legitimate users, false positives can be introduced

if one of them is mistakenly detected as a valid MAAR cut.



Social rejection

…

Social edge

Legitimate users Fake accounts

Self-rejection cut

Fig. 7: Attackers whitewash a part of fake accounts by making them
reject others as legitimate users do. In this illustration, the attacker
attempts to whitewash the group of fake accounts in the middle.

To reduce the false positives, we incorporate OSN

providers’ prior knowledge into the KL scheme. An OSN

provider can determine whether a few selected users are fake

accounts or legitimate through manual inspection. These users

are randomly selected and we call them seeds. We use this

knowledge to guide the KL partitioning to avoid cut mistakes.

Our idea is to pre-place each seed into its corresponding

spammer or legitimate region and never switch it during

the KL cut search. By distributing seeds over the entire

graph, Rejecto can effectively rule out those problematic

legitimate-user cuts from its search space. In particular, the

undesirable partitions derived from such small cuts within the

legitimate region misclassify portions of legitimate users as

fake accounts, which, with high probability, conflicts with

the pre-placement of the seeds. Therefore, as seeds never

switch regions, Rejecto avoids the problematic cuts. To ensure

sufficient seed coverage, one could employ the community-

based seed selection as in SybilRank [14].

G. Implementation

We have implemented a Rejecto prototype on Spark [36],

a generic in-memory large-data processing platform with au-

tomated fault tolerance. To obtain a scalable and efficient

implementation, we distribute the large social graph structure

to the workers, while keeping only a tractable set of algorithm

variables and states on the master. This data layout ensures that

Rejecto can handle large OSN data sets by scaling the capacity

of the workers, and that the master can efficiently schedule

the Rejecto algorithm according to the algorithm states kept

on it. Using Spark’s key feature, we cache intermediate data

sets and results in memory, reducing the disk I/O cost of their

future reuse by Rejecto. Furthermore, we employ prefetching

to substantially reduce the network I/O. For a more detailed de-

scription of the implementation, we refer the reader to [11].

V. EVALUATION

In this section, we evaluate Rejecto’s effectiveness and com-

pare it to VoteTrust, which ranks users on the friend request

graph to detect fake accounts [32]. We choose VoteTrust for

comparison because it also uses rejections of friend requests.

We assess the two systems under: a) the flooding of spam

requests; b) the collusion and self-rejection evasion strategies;

and c) the rejection of legitimate requests by spammers. More-

over, we demonstrate the plausibility of combining Rejecto

and social-graph-based approaches to form a defense in depth

against fake accounts. Lastly, we evaluate the computational

efficiency of our parallel implementation.

VoteTrust. It generates a user ranking for fake account de-

tection via two steps. First, it uses a PageRank-like algorithm

to assign a trust value for each user, called votes, using the

directed friend request graph. Second, it generates a rating

for each user that depends on the responses that his requests

received, which is called vote aggregation. The rating of a user

is a weighted average of 1s (accepted requests) and 0s (rejected

requests). The weight of a request is the number of votes of

the user that the request goes to times the current rating of

that user. This rating computation takes place iteratively.

VoteTrust has two major weaknesses. First, the vote ag-

gregation relies heavily on the request acceptance rate of

each individual user, hence it is not resilient to collusion

attacks (§V-C). Second, it assumes that because the fake

accounts have few incoming friend requests, the votes of a

fake account assigned by a PageRank-like algorithm are low.

However, attackers can manipulate PageRank values if they

control accounts to send requests to each other [16].

TABLE I: Social graphs used in the simulation.

Social Nodes Edges Clustering Diameter
Network Coefficient

Facebook 10, 000 40, 013 0.2332 17

ca-HepTh 9, 877 25, 985 0.2734 18

ca-AstroPh 18, 772 198, 080 0.3158 14

email-Enron 33, 696 180, 811 0.0848 13

soc-Epinions 75, 877 405, 739 0.0655 15

soc-Slashdot 82, 168 504, 230 0.0240 13

Synthetic 10, 000 39, 399 0.0018 7

A. Simulation setup

Data sets. We simulate friend spam on a Facebook sample

graph, five public social graph data sets [4], and a synthetic

graph, as shown in Table I. The Facebook graph is a sample

graph we obtained on Facebook via the “forest fire” sampling

method [26]. The synthetic graph is generated based on the

scale-free model [13]. Our analysis focuses on the representa-

tive results on the Facebook graph. The results on other graphs

are similar. We refer the reader to [11] for a complete report.

On each social graph, we add a large spamming region with

10K fake accounts for stress-test. Upon the arrival of each fake

account, it connects to 6 other fake accounts. Scenarios with

dense connections among fake accounts are evaluated in §V-C.

Metric. To detect suspicious accounts, Rejecto iteratively

cuts off identified accounts until their number reaches 10K

(as many as the injected fake accounts). With VoteTrust, we

designate the 10K users with the lowest rating as suspicious.

The above assumes that the OSN provider has an estimation

of the total number of fake accounts in the system. In an

OSN deployment, Rejecto can use fine-tuned termination
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Fig. 8: Precision/recall as a function of the
number of requests per fake account, when
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Fig. 10: Precision/recall as a function of the
rejection rate of spam requests.

conditions, as described in §IV-E. We compare Rejecto against

VoteTrust based on the precision: the ratio of the number of the

detected fake accounts to the number of declared suspicious

users. Since we let each scheme declare the same number

of suspicious accounts as that of the fake accounts we have

injected, the precision is identical to the recall [29]. A high

value of precision/recall indicates high detection accuracy.

Simulating rejections. Based on a previous measurement

study in RenRen [33], we set the rejection rate to 70% for fake

accounts, and to 20% for legitimate users. We set scenarios

to study the sensitivity to those rejection rates in §V-B. We

let each fake account send out 20 requests to legitimate

users. The fraction of these requests that are rejected is the

rejection rate. This is a moderate baseline attack setting. As

will be shown (§V-B), sending out more requests exposes more

fake accounts to the detection systems. To simulate rejections

among legitimate users, we compute the number of a user’s

rejections by taking into account the rejection rate and the

number of friends he has on the social graph.

B. Sensitivity analysis

Impact of the spam request volume. We simulate flooding

attacks, where attackers flood friend requests to legitimate

users. To this end, we increase the number of requests that

each fake account sends out, ranging from 5 to 50, with a

fixed rejection rate 70%. Figure 8 shows that Rejecto retains

a high detection accuracy regardless of the number of requests

per fake account. In contrast, VoteTrust’s accuracy is low when

the number of requests is small, and improves as the number of

requests increases. This is because VoteTrust does not directly

target the aggregate acceptance rate of the requests from fake

accounts. Instead, it is sensitive to the volume of the requests

due to its use of the PageRank-like vote assignment, i.e. the

fake accounts get less votes if they send out more requests.

Attackers may attempt to protect some of their accounts

from getting rejections. To this end, they use only a portion of

their accounts to sent friend requests to legitimate users. At the

same time, to avoid being isolated, the rest of their accounts

connect to the spamming accounts. To assess our system under

this strategy, we simulate attacks in which only half of the

fake accounts flood friend requests. As shown in Figure 9,

Rejecto withstands this attack because of the unchanged high

rejection rate of the spam requests. Rejecto does not place the

non-request-sending fake accounts into the legitimate region,

because doing so would yield a higher acceptance ratio as

these accounts are connected to the fake accounts that send

out spam requests. VoteTrust is as low as 50%, indicating that

it misses almost all the fake accounts that do not send friend

requests. This is because VoteTrust’s vote aggregation relies

on the request acceptance rate of individual users. It missed

the fake accounts behind the spamming accounts.

Sensitivity to the rejection rate of spam requests. We

examine the impact of the rejection rate of spam requests

by varying its value from 0.5 to 0.95. Figure 10 shows

that the increasing rejection rate of spam requests results in

improved accuracy for both Rejecto and VoteTrust. Rejecto

and VoteTrust do not achieve high detection accuracy when

the rejection rate is small. Besides, Rejecto can detect almost

all of the fake accounts if the rejection rate of their requests

is close to 60%.

Sensitivity to the rejection rate of legitimate requests. We

increase the rejection rate of legitimate requests from 0.05 to

0.95, while fixing that of spam requests to 0.7. As shown

in figure 11, the accuracy of Rejecto and VoteTrust degrades

with the increase of the rejection rate of legitimate requests.

This is because the gap of the request rejection rate between

fake and legitimate users shrinks, which makes them less

distinguishable.

C. Resilience to collusion and self-rejection

We evaluate the resilience of Rejecto to the collusion and

self-rejection detection evasion strategies.

Collusion between fake accounts. We evaluate Rejecto’s

resilience to the collusion strategy (§III-A) by varying the

number of per-account accepted friend requests between fake

accounts from 4 to 40. Figure 12 shows that Rejecto’s accuracy

remains high as the average rejection rate of a fake account

drops from 70% to 23%. This is because the edges between

colluders do not change the aggregate acceptance rate of

their requests to legitimate users. In contrast, VoteTrust’s

accuracy degrades as the edges among spammers become

denser, because it relies heavily on the number of requests

from and the rejections to individual users.

Self-rejection within fake accounts. We evaluate Rejecto

under the self-rejection strategy (§IV-E). In this simulation,

attackers attempt to whitewash 5K fake accounts and disguise

them as legitimate users by rejecting other fake accounts. We
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let each of the other 5K fake accounts send 20 requests to the

fake accounts to be whitewashed. We increase the rejection

rate of these requests from 0.05 to 0.95. We can see in

Figure 13 that the accuracy of Rejecto remains high, except for

the slight degradation when the rejection rate is close to 0.7,

which is the rejection rate of requests from fake to legitimate

users. This is because the ratio of the spammer/legitimate cut is

too close to that of the cut within the fake account region, such

that our algorithm is not able to precisely pinpoint it. When the

self-rejection rate is larger than 0.7, Rejecto repeatedly solves

MAAR, which detects the 5K request-sending fake accounts

first, and then the whitewashed accounts. Unsurprisingly, we

can also see that the self-rejection strategy is counterproductive

against VoteTrust. We refer to [11] for simulations that show

the system’s resilience to the strategic rejection of requests

that careless legitimate users send to fake accounts.

D. Defense in depth with social-graph-based Sybil detection

Rejecto can be used in combination with social-graph-

based schemes to systematically detect Sybils (§II-B). We

choose SybilRank [14] as a representative social-graph-based

detection scheme, and run it on social graphs after removing a

number of accounts that Rejecto declares as friend spammers.

We use the value of area under the ROC curve [14] to measure

the quality of the ranking of SybilRank. We add a 10K-Sybil

set, among which 5K Sybils send out 20 spam requests, each

at a rejection rate of 70%. Figure 14 shows the improvement

of SybilRank’s accuracy on our Facebook sample graph and

the ca-AstroPh social graph [4], as the number of users that are

removed by Rejecto increases. This improvement is because

our system detects spamming accounts whose removal can

reduce a significant fraction of attack edges in the social

graph. If we let Rejecto remove 5K suspicious users, the area

under the ROC curve of SybilRank’s ranked list is close to 1,

indicating that SybilRank detects most of the rest of the Sybils

by ranking them to the bottom of its ranked list.

E. Computational cost on large graphs

We deployed our Rejecto prototype on a EC2 cluster

running Spark 0.9.2 with 5 computational nodes (1 master and

4 workers), each equipped with 60 GB RAM. We generated

synthetic input graphs with size varying from 500K to 10M
users. For graph size 500K , 1M , 2M , 5M and 10M , the

execution time is 288, 669, 1767, 8049 and 27673 sec,

respectively (Table II). These results indicate that the execution

time grows gracefully with the graph size, i.e., close to

Θ(n logn). Because KL is a nearly linear-time algorithm [19],

we anticipate that on a cluster with sufficient capacity (e.g.,

100 worker nodes each with 40-60GB RAM and a master node

with ∼200GB RAM), Rejecto can process social graphs with

hundreds of millions of users.

TABLE II: Rejecto’s execution time on large graphs of different sizes

#users 0.5M 1M 2M 5M 10M

#edges ∼ 8M ∼ 16M ∼ 32M ∼ 80M ∼ 160M

Time 288 sec 669 sec 1767 sec 8049 sec 7.7 hours

VI. DISCUSSION

Responses to the detected accounts. To prevent detected

accounts from sending out friend spam in the future, an OSN

provider can take actions, such as sending CAPTCHA chal-

lenges, rate-limiting their online activities, or even suspending

the accounts [14], [30]. The actions taken before account

suspension allow certain degree of tolerance to the false

positives (e.g., OSN creepers [30]) in the detection system.

Application to the detection of other malicious ac-

counts. OSN providers can apply Rejecto to the detection of

other malicious accounts, such as compromised ones. If com-

promised accounts are manipulated to pollute the social graph

via friend spam, their requests follow Rejecto’s friend spam

model. Therefore, they are exposed to Rejecto’s detection. In

such a deployment scenario, the OSN provider can shard friend

requests and rejections according to the time intervals in which

they have occurred, and then run Rejecto on an augmented

graph constructed from the sharded requests and rejections



in each interval. This enables Rejecto to detect compromised

accounts in post-compromise intervals.

VII. RELATED WORK

Our work is mostly related to VoteTrust [32], which we

summarize and experimentally compare to in Section V. Re-

jecto is also related to social-graph-based Sybil defenses [14],

[17], [34]. These proposals rely on social graph properties to

distinguish Sybils from non-Sybil users, i.e., that the number

of edges connecting Sybil with non-Sybil nodes is relatively

small. But, fake accounts benefit from soliciting OSN links

via spammy friend requests because a non-negligible portion

of users does not scrutinize, but accept them. Rejecto comple-

ments the aforementioned defenses. It cleans the social graph

of the fake accounts that have obtained social edges, but in

the process also have received many social rejections.

There is a plethora of studies on trust propagation in signed

social networks [18], [21], [24], [37], where a social network

contains both positive and negative edges. Unlike Rejecto,

they do not use the aggregate acceptance rate, thus they are

susceptible to manipulation. Moreover, they consider negative

votes and ratings that malicious users can arbitrarily cast. As

a result, they are not resilient to user distortion.

Recent work in signed social networks studies the “structure

balance” [27]. The structural balance theory examines the

signs of the edges of each interconnected three nodes, called

a triad. A triad is balanced if the signs of edges respect the

principles in social psychology, such as ”the friend of my

friend is my friend” and ”the enemy of my enemy is my

friend”. Nevertheless, it is unclear how the structure balance

theory could be used to detect friend spam.

VIII. CONCLUSION

We contribute to the fight against fake accounts (Sybils) and

their abusive friending activity in Facebook-like symmetric

OSNs. We designed and implemented Rejecto, a system that

detects fake accounts sending out unwanted friend requests.

Rejecto augments the social graph with social rejections, and

seeks the minimum aggregate acceptance rate cut. With this

formulation, our system is able to uncover friend spammers in

a manipulation-resistant way. Our evaluation results show that

Rejecto is effective in a broad range of scenarios, resilient to

attack strategies, and computationally practical.
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