
Speeding Up TCP with Selective Loss Prevention
Zhenyu Zhou

Duke University
zzy@cs.duke.edu

Xiaowei Yang
Duke University
xwy@cs.duke.edu

Abstract—Low latency is an important design goal for reliable
data transmission protocols such as TCP and QUIC. However,
timeout-based loss recovery can unnecessarily increase end-
to-end latency. Previous work in reducing timeout-based loss
recovery latency either duplicates every packet to avoid loss or
focuses on fine-tuning the timeout timers to shorten the timeout
latency without causing spurious packet retransmissions. In
this work, we propose a new mechanism called Selective Loss
Prevention (SLP) to reduce the loss recovery latency of a reliable
transport protocol.

Through extensive trace analysis, we find that not all lost
packets are equal. The loss of packets with certain flags, such
as SY N and PSH , is more likely to cause timeouts than other
packets. Based on this observation, we propose to selectively
duplicate an ”important” packet whose loss is likely to increase
a connection’s latency. We design an algorithm to determine
when to duplicate a lost packet proactively and incorporate
it into TCP’s congestion control algorithm so that duplicate
packets will not congest the network. We incorporate SLP into
Linux’s kernel and evaluate its performance. Our results show
that SLP can reduce timeout-based latency caused by the loss
of important packets in a connection, and its overhead is low.

I. INTRODUCTION

Many TCP-based applications demand low latency. Studies
have shown that service providers might lose more than a
billion dollars or 3.5% of their conversions if their sites were
delayed by just one second [1], [2]. As a result, there has been
much effort in reducing latency for both web and data-center
applications. This work includes algorithms and systems to
improve TCP’s performance [3], [4], [5], [6], [7], [8], [9],
newer and faster transport protocols such as SPDY [10],
QUIC [11], and NDP [12], and efforts to completely by-
pass TCP and use RDMA over lossless Ethernet to achieve
ultra-low latency [13], [14] for data center applications.

In this work, we re-examine the TCP latency reduction
problem. We observe that much of the previous work fo-
cuses on improving TCP’s congestion control algorithm to
fully utilize any available bandwidth [15], [16], [17], [18],
[19], [20]. However, from the real-world TCP traces we
analyzed, we discover that TCP timeout is a main factor
that increases TCP latency. A TCP sender infers a packet
loss from a missing acknowledgement. However, it cannot
reliably tell whether a missing acknowledgement is caused
by a packet loss or by network delay [21]. If it retransmits
too early, it leads to unnecessary retransmissions and may
cause congestion collapse [22], [23]. If it waits too long, it
hurts application performance. This problem is alleviated by
fine-grained TCP timers [5] and TCP’s fast retransmission
technique. However, as we observe in the real-world traces

(§ II-B), fast retransmission is not always triggered. Timeouts
still constitute a significant fraction of a flow’s loss recovery
events: our analysis in § II-B shows that they account for
around 10.1% of all retransmission events. For wide area
networks, even if we use fine-grained timers, the timeout
period can still be in the order of a few hundred milliseconds.

In this work, we propose to use a technique called Selective
Loss Prevention (SLP) to further reduce TCP latency. SLP
aims to predicate the “important” packets in a flow whose
losses are likely to cause timeouts, and aggressively duplicate
them to prevent loss. Prior to this work, there exist two
generic loss recovery mechanisms: Automatic Repeat Re-
quest (ARQ) [24], and Forward Error Correction (FEC) [25].
TCP uses ARQ for loss recovery. We investigated whether
FEC can reduce the loss recovery latency in reliable trans-
mission protocols. However, a simple analysis shows that
applying FEC to all packets in a connection with a low
loss rate (§ II-A) is not cost effective. This is because FEC
introduces redundancy in data transmission. It introduces
high packet transmission overhead but does not significantly
shorten flow completion time. Unsurprisingly, QUIC, first in-
corporated FEC, but soon abandoned it [11]. This observation
motivates us to ask this question: Can we achieve a better
cost-benefit tradeoff if we selectively apply FEC to certain
packets in a connection? We call this approach Selective
Loss Prevention. In this work, we focus on the simplest
form of FEC: packet duplication, and defer to study more
sophisticated FEC schemes to future work.

We encounter two technical challenges in this study. First,
how does a TCP sender decide which packets warrant SLP?
Second, if a network is congested, packet duplication may
worsen the congestion status. How can we prevent redundant
packets from congesting the network? To address these
challenges, we first use real-world TCP traces collected by
CAIDA [26] and at data center networks [27] to discover
what types of packets are more likely to cause TCP timeouts.
Our results suggest that head loss (i.e., the loss of a SY N
packet), tail loss, and the loss of packets with PSH flags
are at least ten times more likely to cause TCP timeouts
than other types of TCP packets. Second, we design an
algorithm to decide whether a TCP sender should duplicate
a packet. The algorithm analyzes the potential latency reduc-
tion for duplicating a packet based on the current available
bandwidth, the inferred loss rate, and the likelihood that
the packet loss may cause a timeout. Finally, we modify
TCP’s congestion algorithm to take into account duplicate
packets. The new congestion control algorithm will reduce978-1-6654-4131-5/21/$31.00 c©2021 IEEE

the available congestion window size of TCP when duplicate
packets are sent but does not change the available receiving
window size as receivers will discard the duplicate.

To evaluate the cost and effectiveness of SLP, we design a
framework to incorporate SLP into the current TCP design.
We also implement SLP using a Linux TCP implementation
(§ II-C). We then conduct a “what-if” analysis using the wide
area and data center traces mentioned above. The what-if
analysis answers the question: What are benefits and costs of
SLP if we enable SLP? Our analysis shows that duplicating
SY N packets alone can shorten the flow completion times
for all flows suffering SY N losses, which consist of 2.6%
flows among all flows. We then run experiments to provide
a preliminary evaluation of SLP’s effectiveness in a real-
world like environment. We compare an SLP-enabled TCP
connection and a regular TCP connection between a client
and a server machine using an emulated web workload. The
experiments show that SLP can reduce the long tail of flow
completion times caused by TCP timeouts.

As a TCP variant, we acknowledge that deploying SLP
on TCP needs a considerable amount of time. Luckily,
new pluggable congestion control interfaces provided by
emerging user-space techniques such as QUIC [11] offer
quicker iteration for SLP’s deployment.

In summary, this work makes the following contributions:
1) we propose SLP to reduce TCP latency; 2) we investigate
what types of packet losses are likely to cause TCP timeouts;
3) we design algorithms to incorporate SLP into TCP without
causing network congestion; and 4) we provide a preliminary
evaluation of the costs and benefits of SLP.

II. DESIGN

In this section, we describe the design rationale behind
SLP. We use a simple analysis to show that enabling FEC
for all packets is not cost effective. We then use trace analysis
to discover what types of packets are more likely to cause
TCP timeouts if they are lost. Finally, we describe how to
incorporate SLP into the current TCP design.
A. FEC Analysis

In this subsection, we compare the per-packet overhead of
two loss recovery mechanisms: FEC and ARQ. The metric
we use is the fraction of goodput, i.e., the number of unique
packets delivered divided by the total number of packets sent.
For simplicity, we assume the network randomly discards a
packet with a probability p, the FEC group size is n, the
number of redundant packets per group is k, and all packets
have the same size.

For ARQ, each packet may be discarded with a probability
p, and received reliably by a receiver with a probability 1−p.
The probability that the packet will be reliably received by a
receiver after being transmitted x times is: px−1(1−p). Thus,
the expected number of transmission times per packet is:
E[X] =

∑+∞
x=1 xP (X = x) = 1

1−p . The fraction of ARQ’s
goodput is ηARQ = 1− p.

For FEC, if we assume that no packets need to be retrans-
mitted, the fraction of its goodput is ηFEC = n

n+k .

If the packet loss rate satisfies p ≤ k
n+k , which is the

condition to ensure that FEC can fully recover a lost packet
without any retransmission, we have ηARQ ≥ ηFEC .
B. Important Packets

In this subsection, we use real-world packet traces to study
the question whether the losses of different types of packets
affect TCP performance differently. The types of packets
whose losses are more likely to cause TCP timeouts are
candidates for SLP.

1) Packet Traces: We analyze real-world packet traces
from data center networks (DCN) [27] as well as from
the wide area Internet collected by CAIDA [26]. These
traces include real-world traffic and their characteristics are
different from active probing traffic [28].

The DCN traces were collected from multiple data centers
including commercial cloud data centers, private enterprise
data centers, and university campus data centers by SNMP
polls. Each trace includes several days’ traffic collected at
randomly chosen locations within a data center. The traces
only include packet headers without payload. We use the IP
addresses in the packet traces to distinguish a client from
a server in a given TCP connection: the client is the one
actively sending the first SY N packet and the server is the
one responding with a SY N /ACK.

The CAIDA traces were collected at a backbone OC192
links in Chicago in 2016. However, the traces hide the
authentic IP addresses by CryptoPan [29]. As a result, we
cannot pair the two directions of a TCP connection. The
sender of the reverse direction (from the server to the client)
does not match the receiver of the forward direction due to
anonymization. In our analysis, we do not distinguish the two
directions.

��
����
����
����
����
����
����
����
����
����

�� ��� ��� ��� ��� ����

�
�

��������

��
��
���
�

of
 T

im
eo

ut

(a) Forward half from client to server

��
����
����
����
����
����
����
����
����
����

�� ��� ��� ��� ��� ����

�
�

��������

��
��
���
�

of
 T

im
eo

ut

(b) Reverse half from client to server

��
����
����
����
����
����
����
����
����
����

�� ��� ��� ��� ��� ����

�
�

��������

��
��
���
�

of
 T

im
eo

ut

(c) Foward half from server to client

��
����
����
����
����
����
����
����
����
����

�� ��� ��� ��� ��� ����

�
�

��������

��
��
���
�

of
 T

im
eo

ut

(d) Reverse half from server to client
Figure 1. This figure shows the position analysis results for the
DCN traces. The x-axis is the position index of a packet in a
one-way TCP connection. We break each connection into two
halves by the packet in the middle. For the first half, we index
the packet from the first packet. For the second half, we index
the packets from the reverse order so that the last packet always
has a position 1 regardless of the connection length, and there
is no overlap between the two directions. The y-axis shows
the fraction of timeout-based retransmissions among all packet
retransmissions. As can be seen, head losses and tail losses are
more likely to cause timeouts.

��
����
����
����
����
����
����
����
����

�� ��� ��� ��� ��� ����

��
��
���
�

of
 T

im
eo

ut
�

�

��������

(a) Forward half

��
����
����
����
����
����
����
����
����

�� ��� ��� ��� ��� ����

�
�

��������

��
��
���
�

of
 T

im
eo

ut

(b) Reverse half

Figure 2. This figure shows the position analysis results for the
CAIDA traces.

2) Infer Retransmission Types: To study what types of
packet losses are likely to cause TCP timeouts, we first need
to infer packet losses from the packet traces, and then what
type of retransmission is triggered by a packet loss. To do so,
we infer packet losses from retransmitted packets, which will
show up as packets with duplicate sequence numbers in our
traces [30]. We then use the k-means algorithm to classify
retransmissions into two groups: timeout-based retransmis-
sion and fast retransmission. The classifier separates the two
groups based on the packet transmission intervals. The group
with the longer interval is classified as the time-out group,
and the one with the shorter interval is classified as the fast
retransmission group. The advantage of using k-means is that
we need not manually set the threshold between the time-out
group and the fast transmission group. The algorithm itself
automatically infers this threshold. Wireshark uses statically
configured timeout values though to infer time-outs [31],
[32]. We compared our results with the results inferred by
Wireshark, and found that around 3% of the data points were
grouped differently.

3) Position Analysis: After inferring timeout-based re-
transmissions, we measure the fraction of timeout-based
retransmissions among all retransmissions seen in the traces
for packets lost at different positions in a TCP connection.

��
����
����
����
����

��

���
�

��
��
��
�

��
�

���
�

��
�

��
��
��
�

��
��
��
�

��
��
���
�

�����

(a) Client Side

��
����
����
����
����

��

���
�

��
��
��
�

��
�

���
�

��
�

��
��
��
�

��
��
��
�

��
��
���
�

�����

(b) Server Side

Figure 3. This figure shows the fraction of timeouts caused by the
losses of packets with different TCP flags for the DCN packet
traces. The x-axis shows the flags carried by the lost packets
and the y-axis shows the fraction of timeouts.

��
����
����
����
����

��

���
�

��
��
��
�

��
�

��
��
��
��
��
�

���
�

��
�

��
��
��
�

��
��
��
��
��
�

��
��
��
�

��
��
���
�

�����
Figure 4. This figure shows the fraction of timeouts caused by
the losses of packets with different TCP flags for the CAIDA
packet traces.

We refer to this analysis as position analysis. For each
connection, we break it into two halves by the packet in the
middle of the connection. Since different connections have
different number of packets, for the first half, we index a
packet’s position from the forward direction. For the second
half, we index it from the reverse direction so that the last
packet of a connection always has a position index 1. Because
very few connections have more than 200 packets, we stop
our index at 100.

Figure 1 and 2 show the results for this analysis. As can be
seen, for both the data center and CAIDA packet traces, head
and tail losses are more likely to cause timeouts than packet
losses at other positions of a connection. Not surprisingly,
more than 70% of TCP SY N packet losses caused a timeout.

4) Flag Analysis: Next, we analyze whether the losses of
packets with different TCP flags have different likelihoods
to cause timeouts. We refer to this study as flag analysis.
Similar to the position analysis, we measure the total number
of packet retransmissions for packets with different TCP flags
and then the fraction of packet retransmissions triggered by
timeouts among all retransmissions with the same type of
TCP flag. A packet may carry multiple TCP flags. For each
combination of TCP flags observed in our packet traces,
we count it as a category. Figure 3 and 4 show the flag
analysis results for all significant categories. We ignored the
categories with < 1% packets. As can be seen, the losses of
packets with FIN and SY N flags are more likely to cause
timeouts, which is consistent with position analysis.

In addition, we find that the loss of a packet with the PSH
flag has a significantly higher likelihood to cause timeouts
than a regular data packet without any special TCP flag other
than the ACK flag. We speculate this result may be due to
the fact that when a TCP sender sets the PSH flag, it may
not have more data to send immediately. So the loss of a
PSH packet may not trigger three duplicate ACKs, which
require three subsequent packets to be received by the TCP
receiver. Therefore, the loss of a PSH packet is more likely
to cause a timeout.

Takeaway: Our trace analysis suggests that the losses of
certain packets, i.e., packets near the beginning or end of a
connection, and packets carrying the PSH flag, are more
likely to cause TCP timeouts than other packets. Therefore,
applying SLP to these packets may shorten TCP latency
without introducing much overhead.

Pacing

Packet
Duplicator

Normal TCP
Processing

SLP?

NO

YES

Sliding Win
Allowed?

YES

NO

tcp_send(pkt)

Figure 5. This figure shows how we incorporate SLP into TCP.

C. Architecture
Based on our trace analysis, we incorporate SLP into the

existing TCP design. Figure 5 shows the key components to
realize SLP. Before a TCP sender sends a packet, it invokes
the SLP Arbitrator module to determine whether it should
duplicate a packet (§ II-C1). If yes, it then checks whether
the TCP’s congestion window allows the duplication. If so,
the Packet Duplicator module will duplicate the packet and
update the TCP congestion window using the algorithm we
soon describe in § II-C2. It then calls the Pacing module to
insert a gap between the original packet and the duplicated
packet, and send both packets. We use packet pacing to avoid
bursty packet losses [6].

Next, we describe how the SLP arbitrator selects a packet
for loss prevention, and how we update the TCP’s congestion
control algorithm to incorporate duplicate packets.

1) SLP Arbitrator: In our design, the SLP arbitrator uses 5
parameters to select a packet for duplication. They include: 1)
the estimated loss rate p; 2) the estimated available bandwidth
of this connection bw; 3) the likelihood that the packet loss
will lead to a timeout q; 4) the packet size pkt size; and
5) the current TCP timeout value RTO. The SLP arbitrator
uses these parameters to estimate whether a duplication will
shorten or increase a flow’s completion time. Specifically, if
a packet is not duplicated, with probability pq, the original
packet is lost and a timeout occurs. The arbitrator estimates
that the connection’s latency will increase on average by
t1 = p ∗ q ∗ RTO seconds. If the packet is duplicated and
the original packet is not lost, then the connection’s latency
will on average increase by the time it takes to transmit the
duplicate packet: t2 = (1−p)∗pkt size/bw. If t1 ≥ t2, it is
advantageous to duplicate the packet. Otherwise, the packet
should not be duplicated.

The SLP arbitrator can learn the parameters p, bw, and q
from the current TCP connection or use the system’s default
configuration value. The SLP arbitrator can obtain the values
of pkt size and RTO from TCP. The loss rate p can be
estimated from past and current connections or use a static
value that reflects the average loss rate of the TCP’s operating
environment, e.g., a data center or the wide area network.

The probability of timeout q is the most important but
also the hardest parameter to set. It is our future work to
study how to accurately estimate q. Our current design sets

p and q using the values we obtain from our trace analysis.
We set p = 2%, which is the average loss rate measured
from the CAIDA traces. We set q = 1 for SY N packets,
and 10% for PSH packets. With these settings, assuming
RTO = 1 s, a SY N packet whose size is less than 70 bytes
even with all the TCP options will be selected for duplication
if the available link bandwidth is greater than 3.35Mbps. A
PSH packet will be selected for duplication if the available
bandwidth is greater than 7.16Mbps assuming its size is less
than 1500 bytes.

2) Modified Sliding Window Algorithm: It is important
that a duplicate packet does not lead to network congestion
or overflow a receiver’s buffer. Since TCP uses a sliding
window algorithm for congestion control, flow control, and
reliability, we can use the size of the sliding window to
determine whether we can safely send a duplicate packet
without congesting the network nor overflowing a receiver’s
buffer. However, a duplicate packet occupies a router’s buffer
but will be discarded by a receiver. Therefore, we must
modify the sliding window algorithm to accommodate packet
duplication.

An SLP-enabled TCP sender’s sliding window size win
is computed as the minimum of the receiver’s advertised
window size rwnd and its congestion window size cwnd
shrunk by the number of duplicated bytes: win = min(
cwnd − dup bytes, rwnd). The dup bytes is set to zero
when TCP starts and we soon describe how it is updated.
The sender maintains three additional variables in its se-
quence number space: the highest ACKed sequence number
high acked, the highest sequence number allowed to send
by the sliding window high allowed = high acked+win,
and a pointer pointing to the next-to-send sequence number
next as shown in Figure 6.

win = min(cwnd–dup_bytes, rwnd)

Highest
ACKed Next Highest

Allowed
Figure 6. Congestion Window with SLP. Three points are kept
inside the sliding window for making the duplication decision.

If the SLP Arbitrator determines that a packet next with
packet size pkt size is worth duplicating, the Packet Dupli-
cator must check whether both the congestion window size
and the receiver window size allow it: next+2∗pkt size <
high acked+ cwnd, and next+pkt size < high acked+
rwnd. If this condition satisfies, the packet will be dupli-
cated. It then moves next pointer to next+pkt size, and sets
its duplicate byte counter to the size of the duplicate packet:
dup bytes = pkt size. The sender’s sliding window shrinks
correspondingly if it is bound by the congestion window size:
win = min(cwnd−dup bytes, rwnd). The TCP sender will
also store the sequence number of a duplicate packet in a
variable: dup seq = next so that it can update its sliding
window size when it receives an ACK. For simplicity, our
current design allows only one duplicate packet per sliding

window.
When an SLP-enabled TCP sender receives an ACK, it will

check whether the ACK acknowledges any duplicate byte. If
it does not, it will update the highest ACKed sequence num-
ber and slide its window as in the TCP design. Otherwise, if
the current ACK number ack includes n bytes from a dupli-
cate packet: ack == dup seq+n−1, where n ≤ dup bytes,
it will update the duplicate byte counter: dup bytes -
= n and update its sliding window size correspondingly:
win = min(cwnd − dup bytes, rwnd). It will then update
the duplicate sequence number to dup seq += n − 1. If
the ACK number completely acknowledges the duplicate
sequence number ack > dup seq + dup bytes − 1, it will
reset dup seq and dup bytes to zero, and correspondingly,
its sliding window grows to min(cwnd, rwnd).

III. PRELIMINARY EVALUATION
In this section, we evaluate the cost and effectiveness

of SLP using a what-if analysis and a simple emulation
experiment. It is our future work to thoroughly evaluate SLP’s
performance.
A. What-If Analysis

Percentile 1% 10% 50% 90% 99%
w/ SLP (s) 0.10 0.15 0.68 9.04 19.58
w/o SLP (s) 0.81 0.86 1.37 9.77 20.26
Reduction 87.7% 82.6% 50.4% 7.5% 3.4%

Table I
This table shows how SLP can reduce the flow completion

time for flows that suffer SY N packet losses in the CAIDA
packet traces.

We analyze how SLP can reduce a flow’s completion time
using the CAIDA packet traces. About 2.6% of all flows in
the CAIDA traces suffer SY N packet losses. We assume
that we duplicate SY N packets for those flows and the
duplicate SY N packets are not lost. Table I shows how SLP
can reduce flow completion times. Specifically, the shortest
1% of the flows with SY N losses complete in 0.81 s. With
SLP, those flows could complete within 0.10 s, an 87.7%
reduction. The median 50% of the flows with SY N losses
complete in 1.37 s. With SLP, those flows could complete
within 0.68 s, a 50.4% reduction. Overall, SLP can reduce
the flow completion times for all flows with SY N losses.
B. Emulation

We conduct a preliminary emulation experiment using two
Linux (Ubuntu 14.04 LTS) machines on Emulab [33], each
with 12 processor cores and 16GB of memory. We set one
machine as a web client and another as a web server. We
then configure the client machine to randomly discard 2%
of its outgoing packets [34] using the Linux TC (Linux
Traffic Control) module for all the experiments. The topology
between the client and the server is not under our control.
We run a modified HTTP server on the server machine. Both
the client and the server’s TCP stack supports SLP.

We configure the client machine to fetch a file from the
server for 50 times and measure the flow completion time
with and without SLP enabled. We set the file size to be the
average file size from all files downloaded from the Alexa
Top 100 sites [35]. We downloaded the files containing ads,

html, css, flash, icon and script from these top sites and
computed the average file size, which is 34KB.

����

����

����

����

����

��

�� ���� �� ���� �� ���� ��

�
�
�

����� ���

(a) Without SLP

��

����

����

����

����

��

�� ���� �� ���� �� ���� ��

�
�
�

����� ���

(b) With SLP
Figure 7. This figure shows the CDF of file completion times
with and without SLP. The x-axis is the file completion time,
and the y-axis is the cumulative distribution of a file completion
time.

Figure 7(a) and Figure 7(b) show the file completion time
distribution with and without SLP with a 2% loss rate,
respectively. We find that SLP significantly reduces the long
tail of the flow completion times. Before deploying SLP,
although most flows complete within 0.5 s, there are several
flows whose completion times are more than 1 s or even 2 s.
After deploying SLP, all flows complete within 0.5 s.

We have also run experiments with different file sizes
ranging from 2−2 KB to 213 KB, with the file size doubling
at each step. The results are similar: SLP reduces SY N time-
outs and shortens the tail latency of short file completion. For
long files, the file completion latency is dominated by the file
size, and SLP’s benefit is not as significant as for short files.
Our experiments also show SLP’s overhead is negligible.
We observe no noticeable CPU/memory utilization changes
compared to the baseline case without SLP enabled.

IV. RELATED WORK
There has been much work in improving TCP perfor-

mance. But most of them aim to improve the TCP’s con-
gestion control algorithm to fully utilize a bottleneck’s band-
width [15], [16], [17], [18], [19], [20]. In contrast, this
work explores how selectively applying FEC to certain TCP
packets may improve TCP’s loss recovery time.

Amend et al. [36] propose to establish multiple connec-
tions at the beginning of an MPTCP connection so that the
loss of one SY N packet will not slow down the connection
setup time. Our work shows that duplicating the SY N packet
along the same path can also avoid timeouts and shorten a
TCP’s connection setup time.

Flach et al. [37] introduce the idea to proactively duplicate
all packets to recover from packet loss. We have shown in
Section II-A that preemptively duplicates all packets may
reduce the overall goodput of a network. SLP selectively
duplicates important packets and can achieve a better tradeoff
between low latency and high throughput.

From QUIC’s specification [38], we discover that a QUIC
connection sends its second handshake packet for negotiating
crypto algorithm twice. This approach bears the same spirit
as SLP, but to the best of our knowledge, we are the first to
formulate the concept of SLP. In addition, we have designed
algorithms to determine when a packet is worth duplication,
and how to prevent duplicate packets from congesting the
network.

There are also researchers focusing on improving the
timeout mechanism. Lai et al. and Zhou et al. [39], [40]
aim to tune RTO more elaborately to shorten TCP timeouts
while this work aims to prevent TCP timeouts. Zhou et
al. [40] point out that head and tail retransmissions contribute
most to performance degradation. However, they simply treat
head loss as data unavailable on the server side. Vasudevan
et al. [5] show that the timeout values designed for the
Internet are too coarse-grained for data center networks. They
proposed to use fine-grained TCP timers to reduce the TCP
timeout values for data center networks and also show the
fine-grained TCP timers can reduce the latency of wide-area
TCP traffic. This work is orthogonal to Vasudevan’s proposal.
We study how to avoid TCP timeouts using preemptive
packet duplication. Our technique can shorten TCP latency
with both fine-grained and coarse-grained timers.

V. CONCLUSION

Timeouts can significantly increase the latency of TCP-
based applications. This work proposes Selective Loss Pre-
vention, an approach that preemptively duplicates certain
TCP packets to avoid TCP timeouts. We analyze TCP packet
traces collected from both a backbone link and several data
center networks to show that head loss, tail loss, and the loss
of packets with PSH flags are more likely to cause timeouts
than other packets. We propose to incorporate SLP into TCP,
and design algorithms to determine when to duplicate a
packet and how to prevent duplicate packets from congesting
the network. We implement an SLP prototype using Linux,
and conduct preliminary evaluations using what-if analysis
and emulation. Our analysis shows that for the 2.6% of TCP
flows that suffer SY N losses in our packet traces, SLP can
significantly reduce the flow completion times. Similarly, our
emulation experiments suggest that SLP can reduce the long
tail of the flow completion times caused by TCP timeouts.

REFERENCES

[1] K. Eaton, “How One Second Could Cost Amazon $1.6 Billion
In Sales,” https://www.fastcompany.com/1825005/how-one-second-
could-cost-amazon-16-billion-sales, 2012.

[2] J. Bixby, “Case Study: The Impact of HTML Delay on Mobile
Business Metrics,” http://www.webperformancetoday.com/2011/11/23/
case-study-slow-page-load-mobile-business-metrics/, 2011.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
in ACM SIGCOMM, 2010.

[4] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the Flow Completion Time Tail in Datacenter Networks,”
in ACM SIGCOMM, 2012.

[5] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and Effective Fine-
grained TCP Retransmissions for Datacenter Communication,” in ACM
SIGCOMM computer communication review, 2009.

[6] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the Perfor-
mance of TCP Pacing,” in IEEE INFOCOM., 2000.

[7] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “TCP
Fast Open,” in ACM CoNEXT, 2011.

[8] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” in NSDI, 2011.

[9] S. Floyd, “TCP and Explicit Congestion Notification,” ACM SIG-
COMM Computer Communication Review, 1994.

[10] M. Belshe and R. Peon, “SPDY: An Experimental Protocol for A Faster
Web,” http://www.chromium.org/spdy/spdy-whitepaper, 2012.

[11] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” in ACM SIGCOMM,
2017.

[12] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-Architecting Datacenter Networks and
Stacks for Low Latency and High Performance,” in ACM SIGCOMM,
2017.

[13] I. D. 802.3bd MAC Control Frame for Priority-based Flow Con-
trol Project, “Superseding IEEE 802.3x Full Duplex and Flow Control,”
http://www.ieee802.org/3/bd/, 2010.

[14] C. DeSanti, “IEEE DCB. 802.1Qbb - Priority-based Flow Control,”
http://www.ieee802.org/1/pages/802.1bb.html, 2011.

[15] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Rent,
and SACK TCP,” ACM SIGCOMM, 1996.

[16] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE Journal on selected Areas in
communications, 1995.

[17] S. Floyd, A. Gurtov, and T. Henderson, “The NewReno Modification
to TCP’s Fast Recovery Algorithm,” 2004.

[18] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” 2003.
[19] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,

Architecture, Algorithms, Performance,” IEEE/ACM transactions on
Networking, 2006.

[20] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS, 2008.

[21] L. Zhang, “Why TCP Timers Don’t Work Well,” in ACM SIGCOMM
Computer Communication Review, 1986.

[22] A. Kesselman and Y. Mansour, “Optimizing TCP Retransmission
Timeout,” in International Conference on Networking, 2005.

[23] V. Jacobson, “Congestion Avoidance and Control,” in ACM SIGCOMM
computer communication review, 1988.

[24] A. Elhakeem, “Automatic Repeat Request,” Wiley Encyclopedia of
Electrical and Electronics Engineering, 2001.

[25] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and
J. Crowcroft, “Forward Error Correction (FEC) Building Block,” Tech.
Rep., 2002.

[26] C. for Applied Internet Data Analysis, “The CAIDA Anonymized
Internet Traces Dataset,” http://www.caida.org/data/passive/passive
trace statistics.xml, 2016.

[27] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteris-
tics of Data Centers in the Wild,” in ACM IMC, 2010.

[28] P. Barford and J. Sommers, “Comparing Probe- and Router-Based
Packet-Loss Measurement,” IEEE Internet Computing, 2004.

[29] T. Zseby, A. King, M. Fomenkov et al., “Analysis of unidirectional
ip traffic to darkspace with an educational data kit,” Cooperative
Association for Internet Data Analysis, Tech. Rep., 2014.

[30] J. Postel, “Transmission Control Protocol,” 1981.
[31] J. Aragon, “TCP Fast Retransmit detected only within 20 ms

of DupACK,” https://osqa-ask.wireshark.org/questions/24168/tcp-fast-
retransmit-detected-only-within-20-ms-of-dupack, 2013.

[32] W. Wang, “TCP Analyze Sequence Numbers,” https://wiki.wireshark.
org/TCP Analyze Sequence Numbers, 2011.

[33] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, “Large-scale Virtualization in the Emulab
Network Testbed,” in USENIX ATC, 2008.

[34] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and
Modelling of the Temporal Dependence in Packet Loss,” in INFO-
COM’99. IEEE, 1999.

[35] Alexa, “Alexa Top Global Sites,” http://www.alexa.com/topsites, 2013.
[36] M. Amend, E. Bogenfeld, and A. Philipp, “Techniques for Establishing

A Communication Connection between Two Network Entities via
Different Network Flows,” 2018.

[37] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing Web
Latency: The Virtue of Gentle Aggression,” in ACM SIGCOMM, 2013.

[38] J. Roskind, “Multiplexed stream transport over UDP,” 2013.
[39] C. Lai, K.-C. Leung, and V. O. Li, “TCP-NCL: A Unified Solution for

TCP Packet Reordering and Random Loss,” in IEEE PIMRC, 2009.
[40] J. Zhou, Q. Wu, Z. Li, S. Uhlig, P. Steenkiste, J. Chen, and G. Xie,

“Demystifying and Mitigating TCP Stalls at the Server Side,” in
Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, 2015.

