

Using Time Travel to Avoid Bugs and Failures in SDN Applications
Zhenyu Zhou1, Theophilus Benson1, Marco Canini2, Balakrishnan Chandrasekaran3

1Duke University, 2KAUST, 3TU Berlin

Problem

Evaluation
Experiment Setup:
Data plane: Mininet and simple traffic generators.
Control plane: Realistic Floodlight applications.

Key takeaways:
- Naive rollback strategies do not suffice for complex
failures; a more principled approach is required.
- Delorean performs better and faster than naive
strategies such as controller reboot or application
reboot (both of which are similar to “last” in the figure).
- The time for symbolic execution does increase with
more code paths, while not significantly: 2.33s, 2.61s
and 2.78s for Hub (1 path), Learning Switch (9 paths)
and Hedera (13 paths), respectively.

*Simple bugs refer to the bugs triggered only by the
code while the complex ones also depend on the input.

Design

How to devise an online technique to safely and systematically
circumvent a bug that manifests even in a well- designed and
well-tested real applications running in a production
environment?

- Bugs are endemic in real applications.
- Network outages cost $1000s per minute.
- SDN controllers do not tolerate application failures.
- Simple failover strategies suffer from deterministic faults.

Delorean provides a quick, safe, online recovery of the real
applications, even in case of deterministic faults.
Key insight: Discover a set of possible code paths (i.e., path through
the source code indicating the control flow) and drive the execution
away from the crash path.

- App Manager: Record messages sent from/to the applications.
- Transaction Manager: Enable rollback of both control and data
plane.
- Transformation Generator: Generate transformations for a given
event.
- Recovery Optimizer: Rank the transformations for efficient tests.
- Crash Cause Analyzer: Find the crash cause that changes the
code path to the crash path, ie. It changes the state and its previous
events do not fall into the crash path.
- Symbolic Execution Analyzer: Build the execution tree, which
comprises all code paths, to help circumvent the crash path.

Workflow
When a crash happens:
1. Determine the crash path and the crash cause.
2. Produce transformations of the crash cause and rank them.
3. Restart the application and restore its states.
4. Inject a set of transformed events.
5. If current transformation fails, resume from (3) with the next one. If all
transformations are exhausted, revert to (1) to find another crash cause
from an earlier instance of time.

Event Transformation

S

1
src’

dst

S
1

src’
dst S

1
src’

dst

S

1
src’

dst

Transform

C
ra

sh

S
if #pkt=N & UDP:
 route-to …

S

Symbolic Execution

�

��

��

��

��

���

���� ������ ��������
�

�

��

��

��

��

��
��
��
��
��
��
��
��
�
��
��
�
��
�
��
�

�
��
��
�
��
�
��
��
��
�

�������� ����������

������� ����
������ ����

������ ����
���� ������ ���� �����

Challenges
Delorean addresses two fundamental challenges in
crash recovery:
- Determine the precise input event to rollback.
- Determine the transformations to apply while
minimizing recovery time and the likelihood of another
crash.

Takeaway: Delorean aims to recover from both
deterministic and non-deterministic bugs of real
applications based on the insights provided by symbolic
execution.

This work is partially supported by NSF grant CNS-1409426.

Network

State Management Layer

App1 App2 App3

SDN Controller

Delorean

App Manager

Transaction
Manager Symbolic

Execution
AnalyzerTransformation

Generator

Crash
Cause

Analyzer

Recovery
Optimizer

S4S3

S2

Monitor/Log

Controller

src
dst

Application

src’
dst

src’’
dst

src’
dst

S6

Crash affects flow
s

C
ra

sh
 affects fl

ow
s

src’’
dst

dropped

src
dst

on wrong path

S1
misconfigured

