FOCUS: Function Offloading from a Controller
to Utilize Switch Power

Ji Yang!
Xi’an Jiaotong University
and Duke University

Xiaowei Yang
Duke University

Abstract—Software Defined Networking (SDN) uses a logically
centralized controller to replace the distributed control plane in
a traditional network. One of the central challenges faced by
the SDN paradigm is the scalability of the logical controller. As
a network grows in size, the computational and communication
demand faced by a controller may soon exceed the capabilities of
a commodity server. In this work, we revisit the task division of
labour between the controller and switches, and propose FOCUS,
an architecture that offloads a specific subset of control functions,
i.e., stable local functions, to the switches’ software stack. We
implemented a prototype of FOCUS and analyzed the benefits of
converting several SDN applications. Due to space restrictions, we
only present results for ARP, LLDP and elephant flow detection.
Our initial results are promising and they show that FOCUS
can reduce a controller’s communication overhead by 50% to
nearly 100%, and the computational overhead from 80% to 98 %.
Furthermore, we observe that FOCUS offloading to the switches
saves switch CPU because FOCUS reduces the overheads for
communication with the controller.

I. INTRODUCTION

Software Defined Networking (SDN) is a new paradigm
that replaces the distributed control plane in a traditional
network with a logically centralized controller. The benefits
of employing SDN over traditional networking include: ease
of network management, ease of development, and ease of
adoption of new protocols. Modern SDN controllers are used
to run a variety of SDN applications ranging from topology
management and host management protocols to traffic engi-
neering, security, and cloud virtualization applications.

In addition to its proven benefits, SDNs introduce several
critical challenges. Specifically, the logically centralized con-
troller introduces scalability challenges as the controller is
unable to scalably process events from large networks [32].
Moreover, [15], [16] show that the latency between control
and data plane could not be ignored. This latency can be a
major concern to the performance, or even robustness of SDN.

In this paper, we revisit the design space of offloading
functionality from the controller to the switches. Rather than
introducing new hardware primitives or limiting applications to
legacy functions, we aim to develop a simple API that allows

1 These authors contributed equally to this work.

978-1-5090-0933-6/16/$31.00 (© 2016 IEEE

Zhenyu Zhou'
Duke University

Xin Wu
Big Switch Networks

Theophilus Benson
Duke University

Chengchen Hu
Xi’an Jiaotong University

a dominant and crucial fraction of SDN applications to easily
offload important functionality to the switches and design a
framework that efficiently runs the offloaded functionality on
the switch’s CPU.

Packets in OpenFlow switches are often processed in
switch fabrics, which contains ASICs such as forwarding
chip, TCAM or QDR SRAM to enable line-rate forwarding
and matching (generally considered as the fast path). The
OpenFlow agent maintains a TCP connection to the controller,
exchanges OpenFlow messages with the controller, and trans-
lates control messages into hardware instructions for the driver
(known as the slow path). The CPU processes packets at
about two to three orders slower than the ASIC. This gap
in processing speed makes the CPU inadequate for line rate
processing but sufficient for occasional packet processing.

To this end, we chose the following three representative
SDN applications to discuss:

Address Resolution Protocol (ARP) (Default Gateway
or GW): A host needs to recognized its default GW’s MAC
address by sending ARP request before communicating with
WAN networks. In an SDN network, (Figure 1 (a)), the
controller responses all the ARP requests instead of a real
default GW. The IP and MAC of the defaut GW rarely change,
and hosts sharing the same edge switch often share a same
GW. Thus, the response to all ARPs for these hosts will be
identical. From this, we observe that there is an opportunity
to delegate the process of generating ARP replies. Other
protocols, e.g. ICMP-Echo, ICMP-timeout, IGMP and DHCP
relay running within SDN networks share a similar pattern.

Local Link Discovery Protocol (LLDP): The SDN con-
troller sends unique LLDP packets for each switch port
periodically to discover the physical links (Figure 1 (c)). Upon
the message from the receiving ports, the controller learns of
the existence of the physical connection between two devices.
These periodic packets incur a tremendous amount of overhead
and are used by other topology maintenance protocols includ-
ing Link Aggregation Control Protocol (LACP) and Broadcast
Domain Discovery Protocol (BDDP). The only time these
periodic packets include any new information is when they
are used to detect link failures. From this, we observe another
opportunity to delegate functionality to the switches. Namely,

Controller

ARP req(GW)

@
®

(a) (©
Controller Controller

ARP req(GW)

&

—

(b)

Fig. 1: Comparison between OpenFlow (a, ¢, ¢) and FOCUS (b, d,

Controller

E—®

Controller

(e)
Controller

(:2 LLDP
(j) LLDP

@ LLopP

@ Lop
(d ®
f) handling events for ARP, LLDP, and Elephant Flow Detection

respectively. The numbers show the sequence of messages exchanged between a controller and switches.

the process of periodically generating packets.

Elephant Flow Detection: Many SDN applications [4]—
[6], [11], [28], [31], [38] employ packet counters maintained
by a switch to measure, monitor, secure and improve the
performance of the network. Most of these applications, e.g.
Hedera [4] (Figure 1 (e)), frequently query the network
switches for the information. Similarly to the previous exam-
ple, the elephant flow pattern incurs a tremendous amount of
overheads, but the only time these periodic packets include any
new information is when counters are over a certain threshold.
From this, we observe out the last opportunity to delegate
functionality: namely, periodically getting switch meta-data
and evaluating it against a predefined threshold.

Motivated by these applications, we chose to delegate a
subset of control functions called stable local functions (will
be introduced in Section III). We propose the FOCUS (Func-
tion Offloading from a Controller to Utilize Switch power)
architecture, where a controller delegates these stable local
functions to switches. We are attracted to delegating stable
local functions because we can offload a variety of those func-
tions to switches with a simple set of APIs without introducing
switch-to-switch communications and without introducing a
code execution environment at switches.

As a proof of concept, we implemented and evaluated the
controller’s communication and computation workload before
and after function offloading for three functions: ARP replies
for the default gateway, LLDP’s link discovery function, and
elephant flow detection using the FOCUS architecture. Our
experiments show that function offloading can reduce BOTH
a controller’s CPU utilization and the one of a switch, as well
as the number of protocol messages. In addition to the three
functions we implemented, we examined and analyzed several
other commonly used SDN applications and showed tremen-
dous savings with FOCUS (we omitted these applications due
to space constraints and put them in our technical report [35]).

II. RELATED WORK

Legacy Protocol (and OVS): OpenVSwitch (OVS) allows
applications to turn on legacy functions and configure them

using OVSDB [25]. However, each legacy function is uniquely
developed for certain specific protocols and thus fails to scale.
Instead, we show with FOCUS that with a small number of
API functions we are able to achieve generality and scale to
a large number applications and protocols.

Novel Switch Primitives: Unlike existing techniques on
novel switch primitives [10], [23], [37], [39], FOCUS only
delegates control plane functions to a switch’s software stack
without changes to the switch’s hardware. This difference
makes FOCUS immediately applicable to all Whitebox SDN
Switches. Further, FOCUS supports delegation of a richer set
of functionality than exist approaches [8], [10], [17], [30].

Function Delegation: While FOCUS aims to delegate
control functions to the data plane, others, e.g. FRESCO [28],
have explored orthogonal ideas of moving rich data plane
functions, e.g. DPI, from middleboxes to the SDN controllers.
Unlike these approaches to increase load on the controller,
FOCUS aims to reduce load and processing on the controller.

Distributed Control Planes: Whereas distributed controller
architectures [12], [14], [19], [20], [33], [36] partition visibil-
ity and control of network dynamics among controllers, in
FOCUS, the controller retains visibility and total control.

Local Stable Functions: Identification of local stable func-
tions is in principle similar to the concepts of local functions
identified in prior works [7], [14], [20], [27]. Unlike orthogo-
nal approaches [14], [20], [27], which define locality based on
a set of switches, FOCUS focuses on locality relative to one
switch and network configuration. Meanwhile, the definition
of stable local functions could be complementary to previous
work [30] and further reduce the traffic of control channel.

Novel APIs and Programming Models for SDNs: The
introduction of a programming interface to support delegation
of local functions, while similar to the interfaces provided by
Kandoo [14], is fundamentally different. FOCUS limits the
developer to a narrow and simple interface to ensure simplicity
at the switch, whereas Kandoo [14] allows developers to
develop arbitrarily rich offload messages due to the complexity
supported by the local controllers. P4 [9] abstracts a pro-

grammable switch into match-action processing and Domino
[29] introduces new programmable atoms to support a line-
rate stateful packet processing. Both of them are solutions on
the pacekt forwarding process. FOCUS will help the dataplane
using hardware efficiency at the line speed forwarding.

Other related works [18], [22], [34], [36] propose higher
level programming abstractions that simplify development and
minimize errors. As part of future work, we intend to explore
such high level programming languages and determine how
these languages can enable automated detection and offloading
of stable functions.

III. DESIGN
A. Design Goals

Our observations are similar to those made by prior
works [7], [8], [10], [37]. These problems persist because they
propose a solution that explores interesting points in the design
space that render them hard to adopt: namely, they require new
hardware primitives. We argue that a practical and deployable
design must satisfy the following constraints:

Global Visibility: Delegating control plane function intro-
duces philosophical concerns: namely, delegation can mini-
mize global visibility and reduce the efficiency of centralized
control. Thus, we argue that the API should be designed such
that the controller has identical visibility in our environment
as it would in a traditional SDN environment.

Local Decisions: Many of the functions we aim to del-
egate to the switches require communication between sev-
eral switches. For example, LLDP requires two switches
to exchange LLDP packets and agree on the status of the
switch. Naively designed APIs will introduce complexity and
undermine the architecture. Instead, our abstraction should be
designed to require and act solely on local information.

No Hardware Modification: We argue that rather than
burdening the hardware, solutions should be implemented
using switch software. [13] verifies that it is reasonable to
introduce workload even on legacy switches and the switches
do have the ability to handle a bunch of tasks. Moreover, given
the rise of commodities Whitebox Switches that run Linux [3],
we believe that developing a solution that runs on the switch
CPU will dovetail with orthogonal efforts in industry.

B. Architecture

To support delegation, FOCUS exposes a set of narrow but
expressive APIs that extend on the traditional OpenFlow data-
plane API and support a large number of SDN applications.
And to support these APIs, FOCUS redesigns the traditional
SDN architecture presented in Figure 2, which differs from a
traditional SDN environment in the following ways:

FOCUS extension: The controller includes a FOCUS ex-
tension that allows the SDN applications to leverage the
FOCUS API — we call SDN applications using the FOCUS
API “FOCUS enabled applications”.

FOCUS agent: At least one switch in the network runs a
FOCUS agent. The FOCUS agent runs on the switch CPU
alongside the OpenFlow agent. The FOCUS agent is charged
with setting up triggers and implementing the appropriate

actions for each trigger. Further, the FOCUS agent sits between
the OpenFlow agent and the switch OS, thus allowing it to
intercept OF-events and perform offloaded actions before the
OpenFlow agent can process the event.

The FOCUS design aims to offload stable local functions
to switches. By stable, we mean the output of a function does
not change with time as long as the network configuration
does not change. By local, we mean that the function does
not require input from other switches. This definition allows
FOCUS to delegate proper functions.

FOCUS Controller FOCUS Switch

FOCUS Enabled { focus Extension\l cy 0 o \

Applications | Offloaded Rules | (FOCUS Agent |
|

| I

| |

Rule 1

Traditional SDN | | | Rule2 OT”F":‘” | [Ruke2
Applications | L gent
_____ - R ——

Fig. 2: The FOCUS architecture.

The result of the FOCUS architecture is that fewer control
packets are exchanged between switches and the controller
which results in CPU savings both on the controller and
surprisingly on the switches (discussed in Section V). All
control messages need to go to the controller whereas within
FOCUS a large number of messages are handled locally by
the FOCUS agent running on the switch.

We note two interesting features of this architecture. The
architecture for FOCUS is backwards compatible: unmodified
applications can run along side modified FOCUS enabled ap-
plications with minimal performance degradation (we discuss
this in Section III-E). Further, FOCUS is incrementally deploy-
able because each offloaded function is local to each switch
and thus an application can simultaneously employ FOCUS on
FOCUS-enabled switches and interact in a traditional manner
with traditional switches.

Next we elaborate on the API for configuring FOCUS rules,
then discuss challenges in designing the FOCUS architecture.
These range from: (1) ensuring no loss in visibility or control
(Section III-D); to (2) ensuring performance and security
isolation between the FOCUS agent and traditional OpenFlow
agent (Section III-E).

C. FOCUS API for Expressing FOCUS Rules

A FOCUS rule is composed of a Trigger and an Actionlist,
similar in principle to OpenFlow’s match and action primitive.

Triggers: Our trigger primitives subsume traditional Open-
Flow match primitives and includes timer-based triggers in
addition to the ability to match packet fields. Each FOCUS
rule can be triggered by either, a timeout or recipient of a
packet whose fields matches a pre-specified predicate. Next,
we elaborate on each trigger.

Timer-based: A timer-based trigger enables FOCUS to
support periodic functions. For example, constantly polling a

switch’s resources to determine if certain conditions are met
(e.g. Elephant Flow detection) or constantly sending heart-beat
messages to other devices in the network (e.g. LLDP). The
resolution of the timer depends on the hardware characteristics
and the switch OS: ideally timer resolutions are empirically
defined to minimize CPU overheads.

Predicate (Packet-matching): In addition to timers, FOCUS
rules may be triggered by the receipt of packets that match
certain conditions. Recall, FOCUS agent is inserted between
the OpenFlow agent and the switch OS, thus allowing the
FOCUS agent to receive all packets that the data plane sends to
software. FOCUS supports a more expressive set of predicates
than OpenFlow. Whereas OpenFlow V1.5 [2] supports 44
predicates in its match primitives, FOCUS utilizes the Type-
Length-Value (TLV) scheme [26] which allows FOCUS to
support an arbitrary number of predicates. Recall, TLV allows
the controller to map the bits in a packet to arbitrary ’types’
and then define predicates based on these types.

Action-List: FOCUS supports a radically different set of ac-
tions than the traditional OpenFlow primitives; the differences
in actions underscore the fact that OpenFlow’s actions are op-
timized to support data-plane functionality, whereas FOCUS’s
actions are optimized to enable delegation of control plane
functionality to the switches. At its core, FOCUS supports
three groups of actions :

Packet operations: These operations are generally used in
conjunction with the predicate trigger and allow FOCUS to
access fields of the input packet, and generate an output packet.

Flow entry operation: This action can be used with either
trigger and allows FOCUS to access the meta-data associ-
ated with flow table entries within the datapath. Currently,
we support a single action: rate_with_thresh(), which
examines packet counters and returns information based on
pre-specified threshold.

Message operations: This action manages and delivers the
output packets created by the previously described actions.

The primitive APIs form a series of operations. Every opera-
tion can get the return value of its direct previous operation and
the global static fields. A generated packet template waiting to
be filled is a typical example of global static fields: it can be
touched by a series of operations to form a complete output
packet. If a value EOF is returned, the operation series will
terminate directly, which means the previous operation meets
errors or already wraps up the whole process.

D. Control and Visibility

A key benefit of SDN is global visibility and centralized
control. FOCUS maintains this visibility and central control by
limiting the functionality that is delegated to the set of control
plane functionality that requires information local to the switch
and that requires the switch to make no independent decisions
outside of that pre-specified by the controller (we refer to
these function as being stable). When conditions change at
the switch, FOCUS’s reports and timeout values enable the
FOCUS agent on the switch to alert the controller of changes.

FOCUS Timeouts: Each FOCUS rule has a timeout associ-
ated with it: the timeout expires if the rule is not used within

a pre-specified amount of time. Using this information, the
FOCUS agent can eliminate stale FOCUS rules and inform the
application of changes in network conditions. For example, if
a switch stops receiving packets that match LLDP, the FOCUS
agent can inform the controller through the FOCUS extension
of a change in network conditions — the controller can treat
this as a link failure and react accordingly.

FOCUS Reports: The FOCUS rules and actions are defined
to use flows or ports local to a switch. When the status of
these ports or flows changes, e.g. port down or flow removed,
the FOCUS agent informs the controller and thus allows the
controller to react appropriately.

To support these reports, FOCUS includes special control
messages that enables the FOCUS agent to update the infor-
mation at the FOCUS extension and thus the controller.

E. Isolation and Resource Contention

A key challenge in running a FOCUS agent on the switch
lies in its contention of resources with the traditional Open-
Flow agent. Fortunately, many switches employ traditional
Linux OS, e.g. Cumulus and Open Networking Linux em-
ploys Debian [3], thus allowing us to leverage traditional OS
isolation and containment techniques. In our architecture, the
FOCUS agent runs as an independent process, communicating
with the OpenFlow agent and the controller through two
independent TCP connections. This design choice allows us
to reuse process level techniques provided by traditional OSs.

IV. FOCUS EXAMPLES

In this section, we use concrete examples to show how an
application can use the simple set of FOCUS APIs to delegate
certain functions to switches. When an application delegates
a function to switches, it reduces both its computational
overhead and its communication overhead with the switches.

An incoming packet that matches certain patterns could trig-
ger an outgoing packet. If the function is local and stable, i.e.,
the same matched patterns trigger the same outgoing packets
using switch-local information, a controller can delegate this
function to switches.

We show a concrete example using ARP. Other examples
include the ICMP Time Exceeded function, the MAC address
learning function, and the DHCP relay function.

ARP Reply for Default Gateway: Recall that we describe
in Section I, without FOCUS, an SDN controller must reply
an ARP request to the default gateway from every host. With
FOCUS, a controller can offload this function to a switch by
installing a new FOCUS rule and a set of action items. It can
either proactively offload this function at all edge switches or
reactively install this information at an edge switch after it
receives the first OF_Packet_In packet triggered by an ARP
query received by an edge switch.

We show in Table I how to implement this function using
the FOCUS API. A controller installs a packet match rule
in a switch’s FOCUS rule table. If a packet matches the
type “ARP” and the ARP query is for the default gateway
IP, then the FOCUS agent will execute the installed actions.
The first action is to generate an ARP reply packet template

using the pkt_compose () function. Then a sequence of
get_field() and set_field () actions set the corre-
sponding fields in the outgoing packet from the incoming
packet. For example, the destination MAC address in the
outgoing packet is set from the source MAC address of the
incoming packet. After the corresponding fields in the packet
are set, the last action sends out the outgoing ARP packet.

In addition to ARP replies to the default gateway address,
it is possible to offload ARP replies to all host IP addresses to
switches as done in [8]. It is a design decision an SDN operator
can make. We do not show the examples here for clarity.
Interested readers can find more examples in the technical
report version of this paper [35].

Trigger Actions
pkt_compose(ARP)
get_field(srtc_MAC)

ARP set_field(dst_MAC, ret")

target_IP=GW_IP set_field(target_MAC, ret)
get_field(src_IP)

set_field(target_IP, ret)

pkt_output(in_port)

! Return value of the last operation.

TABLE I: Delegating ARP reply.

V. IMPLEMENTATION AND EVALUATION

We implemented our prototype of FOCUS in 1000 lines
of Java code (at Floodlight Controller [1]) and 700 lines of
C code (at Open vSwitch [24]). At controller side, FOCUS
interface to the applications is added and a hash table called
“Offloaded Function List” is maintained to manage the of-
floaded functions. At switch side, we alter the processing
pipeline of OVS to send all packets from the data-plane to the
FOCUS agent before the OpenFlow agent. The FOCUS agent
implements the offloading table, described in Section III, as
two tables: trigger table and extended action table.

In evaluating FOCUS, we aim to answer the following
questions: What are the benefits of employing FOCUS? What
are the costs of offloading functionality to the switches? How
do the benefits and overheads of FOCUS vary across the
different API calls (and applications)?

A. Evaluation Setup

We evaluate FOCUS using the Mininet [21] emulator. All
our experiments are run on a Dell R620 server with 8G RAM
and 2.80GHz Quad Core Intel CPU running Ubuntu 14.04
LTS. Recall, we developed our applications on the Floodlight
controller, thus we will be evaluating performance of the
Floodlight controller with and without FOCUS extensions.

Topology We evaluate FOCUS on three topologies: a simple
topology for the ARP, a complex mesh-like topology for the
LLDP, and a linear topology for the elephant flow detection.
These different topologies allows us to explore controller
performance as a function of network devices and links.

Metrics To understand the costs and benefits of applying
FOCUS, we analyze the CPU utilization (for controller and

switch) and the fotal number of control messages exchanged
(this serves as a proxy for control plane bandwidth).

B. ARP

We begin, in Figure 3(a), by analyzing the impact of
FOCUS on the ARP application. Specifically, the controller’s
and switch’s CPU utilization as a function of the number of
ARP requests generated. We observe that without FOCUS, the
controller’s CPU utilization is a linear function of the number
of ARP request whereas with FOCUS, the CPU utilization
at the controller is constant. As expected, the CPU saving is
nearly 100% because the switch takes over all the tasks.

As for switch’s CPU utilization, given that FOCUS min-
imizes controller’s CPU utilization by overloading to the
switch. Interestingly, we observe that FOCUS also reduces
CPU utilization at the switches. To understand this phe-
nomenon, we analyze the OpenFlow agents (OS processes)
running the switches and observe that FOCUS eliminates the
generation of additional Packet-In to the controller which
results in a significant savings. To confirm this, in Figure 4(a)
we present the number of control messages generated as a
function of packets sent. From this figure it is apparent that
FOCUS virtually eliminates all communicate between the
controller and switches, thus eliminating the overheads for
generating and processing messages to/from the controller.

Finally, in Figure 4(b), we compare the ARP resolution
times. We observe that by offloading to the switches and elim-
inating the need to involve the controller in ARP resolution,
FOCUS improves ARP response times by more than 20 ms.

C. LLDP

Next, in Figure 3(b), we examine the performance of the
LLDP application. We observe, similar trends in the LLDP
experiments as with the ARP experiments with one difference:
the CPU savings significantly increases after 4000 links. This
increase occurs because after the incoming links exceeds 4000,
the switches are constantly context switching to process the
different controller messages — where as in FOCUS there is
no need to process these controller messages.

Finally, we analyze the traffic load for LLDP in Figure 4(c).
We observe that FOCUS reduces control plane traffic by 50%
on average — this is because the controller no longer needs
to poll the switches, the switches actively report changes to
the topology. However, unlike ARP, in LLDP there is still a
significant amount of control traffic even with FOCUS because
in ARP the switch no longer needs to communicate with
the controller, whereas in LLDP the switches still need to
periodically report changes to the controller.

D. Elephant Flow Detection

Our last application implements elephant flow detection.
Unlike the previous two applications, this application employs
the rate_with_thresh () APL In Figure 3(c), we present
the results of our experiment, from which we can find that
FOCUS similarly decreases CPU utilization on both the switch
and the controller for similar reasons as with ARP — with
more flows the CPU on the switch does more work. We also

100% [e e 100%

CPU Saving
CPU Saving

CPU Saving
1

40%

0 2 4 6 8 10 12 14 16 o 1 2
Incoming ARP Packet Rate (1000 pkis/s)

(a) ARP

3 4
Number of Links / (1000 Links)

(b) LLDP

6 7 8 9 10 “10 20 30 40 50 60 70 80
Number of Hosts / (500 Hosts)

(c) Elephant Flow Detection

Fig. 3: The CPU saving for different SDN applications: (a) ARP, (b) LLDP, and (c) Elephant Flow Detection.

60000 50

70000

Original —— Original ——
Offloading - Offioading =
. 60000 ~
g SO0 = 40 2
& o s
] o £ 50000 o
£ 40000 o g -
: e [5 w000 e
€ 30000 = € e
3 < g 3 30000 e .
% g F 20 s - e
& 20000 el 8 // -
£ e £ 20000 / -
2 10000 e 10 2 ~ -
o 10000 e
Pl -
ol 0 =

10 15 20 25 30 35 40 45 50
Incoming ARP Packet Rate (1000 pkis/s)

(a) ARP Packet Traffic

OpenFlow

Architecture

(b) ARP Response Time

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Links

(c) LLDP Packet Traffic

FOCUs

Fig. 4: Control channel overheads for ARP (a) and LLDP (c). ARP response times (b).

analyzed network traffic, omitted here due to space, and found
its pattern to be similar to the LLDP.

E. Memory Limitations

In OpenFlow switches, flow table entries and memory are
crucial. Motivated by this fact, next, we examine the memory
overheads of FOCUS. In our experiment, we observed that
FOCUS scaled linearly with the number of actions and that
FOCUS never required more than 4MBs of memory.

VI. DISCUSSION

SDN Philosophy and FOCUS: At first glance, FOCUS
may appear at odds with the SDN philosophy — separation
of control and data plane. However, we believe that FOCUS
presents a logical next step to the SDN paradigm. FOCUS’s
API presents programmers with a way to cache functionality
at the switch’s CPU — in a similar way that flow table entries
cache forwarding policies in the TCAM. Similar to TCAM
entries, FOCUS’s rules are a local cache of functionality at
the controller they do not hamper or obscure the controller’s
ability to create a global view of network state.

Running FOCUS on Hardware Switches: In this paper
we demonstrated the benefits of running FOCUS on software
switches. Yet, we believe that switches extend beyond software
switches to hardware switches. In fact, we believe that given
the limited CPU on switches the savings gain from reduced
packet-in/packet-out and their corresponding context switches
will significantly improve the switches’ performance. More-
over, while we have not run FOCUS on software switches
others have shown that modern Whitebox Switches are easily
capable of running novel agents. For example, Cumulus,
BigSwitch and OFX (from UPenn) all demonstrated the fea-
sibility to run custom agents on commodity switches. We are

currently extending BigSwitch’s Open Networking Linux to
implement FOCUS.

Security, Isolation, and Availability: The notion of of-
floading functionality into the switches introduces a number
of interesting research challenges we plan to explore in the
future. These include security, isolation, and fault tolerance.

Generally, opening up the switch OS to third party code
introduces novel avenues for attacks. Yet, with FOCUS we
avoid this by opening introducing a small and limited set
of API calls rather than allowing arbitrary code. These calls
maintain a similar attack surface as the current OpenFlow API
— which similarly exposes a limited set of API calls supported
by an agent on the switch. Furthermore, the offloading rules
still obey the priority given by the controller application, which
keeps the same security level as the current OpenFlow.

Although the API restricts the attack surface, bugs in it can
introduce fault tolerance and availability problems that can
potentially cascade and render the OpenFlow agent on a switch
in-operative. We plan to address this by isolating the FOCUS
agent from the OpenFlow agent and furthermore by isolating
the threads processing information for different application
— thus bugs triggered by an application are limited to that
specific application. These isolation primitives will provide
further isolation by enforcing fine-grained resource limits.

VII. CONCLUSION

In this paper, we study how to improve the scalability of
an SDN controller by enabling a controller to delegate certain
control functions to switches. We study the tradeoffs between
the flexibility of delegation and the cost of delegation. We
choose a design point where a controller can use a simple
set of APIs to delegate a variety of functions, which we call
stable local functions. These functions remain stable over time

as long as the network configuration does not change and they
only require input local to a switch to compute. We describe
the FOCUS APIs and use concrete examples (including ARP
replies, LLDP, and elephant flow detection) to show how a
controller can use such simple APIs to delegate packet-match
triggered functions and periodic timer triggered functions.

Finally, we implement ARP replies, LLDP, and elephant
flow detection functions using the FOCUS API, and show that
the FOCUS design can significantly reduce a controller’s as
well as a switch’s communication and computational overhead.
This result shows FOCUS does not introduce prohibitive
complexity to switches. In our experiments, FOCUS can
reduce a controller’s communication overhead by 50% to
nearly 100%, and the computational overhead by 80% to
98%. Because FOCUS reduces the communication overhead
between a switch and a controller, it can reduce a switch’s
overall computational overhead by 60% to 90% for ARP
replies, around 35% for large-scaled LLDP and 40% to 80%
for elephant flow detection, even though it adds additional
functions to a switch.

REFERENCES

[1] Floodlight. http://www.projectfloodlight.org/floodlight/.

[2] OpenFlow Switch Specification V1.5.0. https://www.opennetworking.
org/images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-switch-v1.5.0.noipr.pdf.

[3] What’s Inside Cumulus Linux for Network-
ing? http://www.enterprisenetworkingplanet.com/netos/
whats-inside-cumulus-linux-for-networking.html.

[4] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., HUANG, N.,
AND VAHDAT, A. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In NSDI (2010).

[S] BALLARD, J. R., RAE, I., AND AKELLA, A. Extensible and Scalable
Network Monitoring Using OpenSAFE. Proc. INM/WREN (2010).

[6] BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M. MicroTE:
Fine Grained Traffic Engineering for Data Centers. In CoNEXT (2011).

[7] BIANCHI, G., BONOLA, M., CAPONE, A., AND CASCONE, C. Open-
State: Programming Platform-independent Stateful Openflow Applica-
tions Inside the Switch. ACM SIGCOMM Computer Communication
Review (2014).

[8] BIFULCON, R., BOITE, J., BOUET, M., AND SCHNEIDER, F. Improve-
ing SDN with InSPired Switches. ACM SIGCOMM SOSR (2016).

[9] BOSSHART, P., DALY, D., GiBB, G., 1ZzZZArRD, M., MCKEOWN,

N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,

VARGHESE, G., ET AL. P4: Programming protocol-independent packet

processors. ACM SIGCOMM Computer Communication Review 44, 3

(2014), 87-95.

CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., YALAGANDULA, P.,

SHARMA, P., AND BANERIJEE, S. DevoFlow: Scaling Flow Manage-

ment for High-Performance Networks. In ACM SIGCOMM Computer

Communication Review (2011).

DAs, A., LUMEZANU, C., ZHANG, Y., SINGH, V., JIANG, G., AND

Yu, C. Transparent and Flexible Network Management for Big Data

Processing in the Cloud. In HotCloud (2013).

DIXIT, A., HAaOo, F., MUKHERIJEE, S., LAKSHMAN, T., AND KoM-

PELLA, R. Towards an Elastic Distributed SDN Controller. In ACM

SIGCOMM Computer Communication Review (2013).

HAND, R., AND KELLER, E. ClosedFlow: Openflow-like Control over

Proprietary Devices. In HotSDN (2014).

HASSAS YEGANEH, S., AND GANJALI, Y. Kandoo: A Framework for

Efficient and Scalable Offloading of Control Applications. In HotSDN

(2012).

HE, K., KHALID, J., DAS, S., GEMBER-JACOBSON, A., PRAKASH,

C., AKELLA, A., L1, L. E., AND THOTTAN, M. Latency in Software

Defined Networks: Measurements and Mitigation Techniques. In ACM

SIGMETRICS (2015).

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]
[27]

(28]

[29]

[36]

[37]

[38]

(39]

HE, K., KHALID, J., GEMBER-JACOBSON, A., DAS, S., PRAKASH, C.,
AKELLA, A., L1, L. E., AND THOTTAN, M. Measuring Control Plane
Latency in SDN-enabled Switches. In SOSR (2015).

HE, K., ROZNER, E., AGARWAL, K., FELTER, W., CARTER, J., AND
AKELLA, A. Presto: Edge-based Load Balancing for Fast Datacenter
Networks. In SIGCOMM (2015).

KiM, H., REICH, J., GUPTA, A., SHAHBAZ, M., FEAMSTER, N., AND
CLARK, R. Kinetic: Verifiable Dynamic Network Control. In NSDI
(2015).

KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J., POUTIEVSKI,
L., ZHU, M., RAMANATHAN, R., IWATA, Y., INOUE, H., HAMA, T.,
ET AL. Onix: A Distributed Control Platform for Large-scale Production
Networks. In OSDI (2010).

KRISHNAMURTHY, A., CHANDRABOSE, S. P., AND GEMBER-
JACOBSON, A. Pratyaastha: An Efficient Elastic Distributed SDN
Control Plane. In HotSDN (2014).

LANTZ, B., HELLER, B., AND MCKEOWN, N. A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks. In HotNets (2010).
MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., WALKER, D.,
ET AL. Composing Software Defined Networks. In NSDI (2013).
MOSHREF, M., BHARGAVA, A., GUPTA, A., YU, M., AND GOVINDAN,
R. Flow-level State Transition as a New Switch Primitive for SDN. In
HotSDN (2014).

NICIRA NETWORKS. Open vSwitch, An Open Virtual Switch.
http://openvswitch.org/ (2010).

PFAFF, B., AND DAVIE, B. The Open vSwitch Database Management
Protocol. RFC 7047 (2013).

PRZYGIENDA, T. Reserved Type, Length and Value (TLV) Codepoints
in Intermediate System to Intermediate System. RFC 3359 (2002).
SCHMID, S., AND SUOMELA, J. Exploiting Locality in Distributed SDN
Control. In HotSDN (2013).

SHIN, S., PORRAS, P. A., YEGNESWARAN, V., FONG, M. W., GU, G,
AND TYSON, M. FRESCO: Modular Composable Security Services for
Software-Defined Networks. In NDSS (2013).

SIVARAMAN, A., CHEUNG, A., Bubiu, M., KiM, C., ALIZADEH, M.,
BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND LICKING,
S. Packet transactions: High-level programming for line-rate switches.
In Proceedings of the 2016 Conference on ACM SIGCOMM 2016
Conference (New York, NY, USA, 2016), SIGCOMM ’16, ACM,
pp. 15-28.

SONCHACK, J., Avlv, A. J., KELLER, E., AND SMITH, J. M. OFX:
Enabling OpenFlow Extensions for Switch-Level Security Applications.
In CCS (2015).

SuH, J., KwoN, T. T., DIXON, C., FELTER, W., AND CARTER, J.
OpenSample: A Low-Latency, Sampling-Based Measurement Platform
for Commodity SDN. In ICDCS (2014).

TAVAKOLI, A., CASADO, M., KOPONEN, T., AND SHENKER, S. Ap-
plying NOX to the Datacenter. In HotNets (2009).

TOOTOONCHIAN, A., AND GANJALI, Y. HyperFlow: A Distributed
Control Plane for OpenFlow. In INM/WREN (2010).

VOELLMY, A., WANG, J., YANG, Y. R., FORD, B., AND HUDAK, P.
Maple: Simplifying SDN Programming Using Algorithmic Policies. In
ACM SIGCOMM Computer Communication Review (2013).

YANG, J., ZHoU, Z., BENSON, T., YANG, X., Wu, X., AND HU,
C. Technical Report CS-TR-2016.001. Tech. rep., Duke University,
Department of Computer Science, 2016.

YEGANEH, S. H., AND GANJALI, Y. Beehive: Towards a Simple
Abstraction for Scalable Software-Defined Networking. In HotNets
(2014).

YU, M., REXFORD, J., FREEDMAN, M. J., AND WANG, J. Scalable
Flow-Based Networking with DIFANE. ACM SIGCOMM Computer
Communication Review (2011).

ZAALOUK, A., KHONDOKER, R., MARX, R., AND BAYAROU, K.
OrchSec: An Orchestrator-Based Architecture for Enhancing Network-
Security Using Network Monitoring and SDN Control Functions. In
NOMS (2014).

ZHu, S., B1, J., SuN, C., Wu, C., AND Hu, H. SDPA: Enhancing
Stateful Forwarding for Software-Defined Networking. In /CNP (2015).

