FOCUS: Function Offloading
from a Controller to Utilize Switch
Power

Ji Yang®, Zhenyu Zhou*, Theophilus Benson,
Xiaowei Yang, Xin Wu and Chengchen Hu

@IEEE NFV-SDN
Nov, 2016

*These authors contributed equally to this work.

- -

Introduction

= [raditional Networks

o Distributed 3 (1; 0 > g °

o Hard to manage

a No global view for decisions -

determine
everything by
myself

Image referenced from: http://dimacs.rutgers.edu/Workshops/NextGenerationNetworks/slides/Wilfong1.pdf

Let me make

decisions with
global view

= Software Defined Networks
o Centralized
o Easy to manage

0 Made decisions with global view

| do not

have a
brain

= Software Defined Networks
a Scalability

= Software Defined Networks
a Scalability

Controller
resources are
“\ limited!

What
The controller’s Sl
: . do??
bandwidth is
limited!

Introduction

= Existing Solutions

o Hardware optimization (DevoFlow [SIGCOMM’11])
= Inflexible

o Distributed control planes (Beehive [SOSR’16])

= Control traffic overhead

Introduction

= Existing Solutions

o Turning on legacy functions (Open vSwitch [NSDI’15])

= Losing visibility and control

o Executing arbitrary code in the switches (Kandoo [HotSDN’12])
= Heavyweight

= Our Approach

o Delegating functions into the switches

Roadmap

Introduction
Challenges and Solution
Architecture and Examples

Evaluation

Challenges

= Global Visibility

a The controller should keep the identical visibility as before

Everyone
is OK

All of us
crashed!

Challenges

= Local Decisions

o The abstraction should act solely on local information

Where
should |

forward it?

Unknown

10

Challenges

= No Hardware Modifications

a Implementing the solution using the switch software

o Leveraging the CPU power from the switches again
s More flexible

m Policies are not limited

= But

0 How to cooperate with the controller?

o How to avoid defining a new programming language?

1

= What is inside a switch?

| [

Forwarding SW Distributed SDN/
(Commercial & Protocol OpenFlow
0pen Sou rce) Stacks Software

Installer/
Loader

Linux Open APIs

for
ASIC

lam a
processor!

Switch
ASIC

Teeeeeeeeer.

Image referenced from: https://sreeninet.wordpress.com/2014/07/23/open-compute-networking-project/

HW
Switch

Solution

= FOCUS: Function Offloading from a Controller to Utilize
Switch Power

o Offloads a subset of control functions into the switches’ software
stack

a Defines a small set of APIs for offloading
o Observation: not all control functions need global view

o Example applications: ARP, LLDP and elephant flow detection

= "Subset”

o Stable local functions
= Remain stable over time as long as the network configuration does not change

= Only require input local to a switch to compute

13

SOlutiOn Let me make

decisions
with global

= FOCUS
o Centralized + Distributed
o Easy to manage
o Made decisions with global view
o Scalable

| can handle
the
functions
not requiring

14

Roadmap

Introduction

Challenges and Solution

Architecture and Examples

Evaluation

15

Architecture

ﬁOC US Controller \ /FOC US Switch \

(~ ~ -_
FOCUS Enabled (FOCUS Extension \I (CPU (_____ \\
Applications | Offloaded Rules FOCUS Agent |
- ~ I Rule 1 I 0 | | [Rule1 I
Traditional SDN | | [Rule2 I penriow | | Rule2
aanona SO | L | Agent |
pplications \ | | -
R p—— \ S,
\ Southbond API / OpenFlow]/ \ Forwarding ASIC (Fast Path) /
\ J \ J
| |

Install FOCUS Rules S
[Controller]~ ------------------ [Switch J
=

16

Architecture

= FOCUS Controller
o FOCUS enabled applications AND the traditional ones

The applications requiring global view are still treated as before

o Offloaded rules table

= Maintains the status of offloaded rules
ﬁOC US Controller \ ﬁOC US Switch \
(FOCUS Enabled 1/ FOCUS Extension\l (CPU (_____ \\
App“cations I Offloaded Rules FOCUS Agent I
p . | | Rulel | Openkl | [Rule1 I
Traditional SDN | | [Rule2 I penriow | | Rule2
SNTSNUEE B Agent |
Applications \ | | [
\ Southbond API / OpenFlow]/ \ Forwarding ASIC (Fast Path) /

\

J \

Install FOCUS Rules

|

_______________ ! ——[Switch]

FOCUS Report

17

Architecture
= FOCUS Switch

o FOCUS agent AND OpenFlow agent

= Handles the FOCUS rules

= Inside switch software stack

ﬁOC US Controller \

— — — — —

FOCUS Enabled | / Focus Extension\
Applications | Offloaded Rules

| Rule 1

I

|

(. . ‘ I
Traditional SDN | | [Rule2

Applications) O |

\ Southbond API / OpenFlow]/

\ J
|

Install FOCUS Rules

ﬁOC US Switch \
P —— R
CPU
(FOCUS Agent \|
OpenFlow : EE:: ; |
Agent l |
N ————)

\

[Controller } —————————

FOCUS Report

18

FOCUS Rules

o Trigger

Timer-based: for periodically polling and sending packets.
Packet matching predicate: flexible TLV packet matching.

o Action-List

Packet operations: for accessing fields of the input packets.

Flow entry operations: for accessing the flow table entries.

Message operations: for communicating with the controller.

o Timeout

Informs the controller of whether a rule is still active.

Trigger

Action List

Timeout

19

Examples

= Comparison of OpenFlow with FOCUS Workflow

o Host Discovery (ARP, ICMP for TTL expiration)
o Topology Maintenance (LLDP)

o Traffic Statistics (elephant flow detection)

20

Examples

[Controller J [Controller J [Controller J
’ Periodically ’
@%’ @/ é\\@ Flow_stats req 9///
ARP req(GW) // @ // @

LLDP \ Periodically
H1 @ @ Flow_stats_reply
—
©) ‘® Lop
(a) (c) (e)

[Controller J [Controller J [Controller J

/ / \\ Report when
/ /
/ \ detected @/
/
ARP req(GW) / / @ LLDP

F—) G —®

® Q@ LLpp

(b) (d) (f)
ARP LLDP Elephant Flow
Detection

21

Examples

APl Example (ARP Reply for Default Gateway)

Trigger Actions
pkt_compose(ARP)

get_field(src_MAC)
ARP set_field(dst_MAC, ret)
target_IP=GW_IP set_field(target_MAC, ret)
get_field(src_IP)
set_field(target_IP, ret)

pkt_output(in_port)

22

Roadmap

Introduction

Challenges and Solution

Architecture and Examples

Evaluation

23

Evaluation

= Setup
o Floodlight + Mininet (Open vSwitch)

o Topology

= A single switch (ARP), mesh-like topology (LLDP), linear topology
(elephant flow detection)

= Questions
o Benefits for the controller
o Costs for the switch
o Benefits for different applications

24

Evaluation: CPU Utilization

CPU Utilization Saving of ARPing

100%

80%

60%

40%

20%

CPU Saving for Controller

0%

Controller Saving ——<—
Swiltch SaYing e

100%

80%

60%

40%

20%

2 4 6 8

Incoming ARP Packet Rate (1000 pkts/s)

10

12

14

0%
16

CPU Saving for Switch

25

Evaluation

= Performance Improvement

a Computational overhead 1s reduced by 80% —98%

= Reduced controller overhead

0 Communication overhead is reduced by 50% —nearly 100%

= Reduced switch overhead

o ARP response time 1s shortened by 18ms
= Benefits for the ARP application

26

Conclusion

FOCUS improves the scalability of an SDN controller
by offloading certain control functions to switches.

FOCUS defines stable local functions.

FOCUS reduces the CPU utilization of both controller
and switch side, the number of control messages and

the response time.

27

Thank you!

Questions?

