
Web-QoS2: Web-browsing Quickly and of course Safely, Too.

Zhenyu Zhou (student)
Duke University
zzy@cs.duke.edu

Theophilus Benson
Duke University

tbenson@cs.duke.edu

With the increasing concern for network security and
privacy, adoption of HTTPS has sky-rocket, with over
50% of traffic flows employing HTTPS[1]. Unfortunately,
websites implement HTTPS:

Blindly: All Objects are retrieved via HTTPS, re-
gardless of size or sensitivity and in certain cases un-
necessarily incurring performance overheads associated
with HTTPS. (HTTPS handshake accounts for over
42% of data exchanged[1].)

With harmful consequences: HTTPS prevents
network functions, e.g. caches, from inspecting pack-
ets and optimizing end-user performance. These can
result in a significant increase in the load on ISP link
and further increase page load times.

Carelessly: Many sites use HSTS[2] as a mechanism
for automatically forcing all traffic to HTTPS. However,
over 59% of websites do so incorrectly resulting in secu-
rity flaws, e.g. redirect to HTTP domain or improperly
set the parameter max-age. Surprisingly, even the sites
that configure HSTS correctly are vulnerable to a num-
ber of attacks due to stale policies or modifications of
time-stamps[3].

We claim that these limitations, highlight the need for
alternative mechanisms for quickly and safely viewing
websites: QoS2.

The main insights underlying QoS2 are that: First,
websites contain both publicly known information, e.g.
java-script, banner images and CSS, which are identical
for all users, and relatively personalized content which
is unique to subset of users, e.g. pictures or Ads. Sec-
ond, the only content worth encrypting is the relatively
personalized content. Moreover, these objects are often
non-cachable, e.g., passwords, or may incur relatively
low cache hit-rates, e.g, personal pictures and Ads.

Building on these insights, QoS2 argues for fine-grained
identification of data as either public or sensitive, which
are then deliver over HTTP and HTTPS respectively.

To illustrate the benefits of QoS2, we manually down-
loaded, identified and tagged the content from several
pages and set our web-servers to serve them over HTTP
or HTTPS appropriately. In Table 1, we present the
improvements in load time for YouTube under different

proxy settings: we observe that a scheme like QoS2 can
improve load time by as much as approximately 16%
when the HTTP proxy has 1.5ms delay.

Page Loading
Time/ms

Delay from origin HTTPS server (in ms)
5 25 50

No proxy 888 1070 1420
HTTP proxy
Delay (in ms)

1.5 744(16.2%) 892(16.6%) 1190(16.2%)
5 863(2.8%) 988(7.7%) 1230(13.4%)

Table 1: Page loading time in multiple cases. The first
row of result doesn’t adopt HTTP. The percentage rep-
resents the improving rate.

The main challenge in applying QoS2 lies in ensur-
ing that security is not compromised, namely we must
ensure that QoS2 does not leave web sites vulnerable
to Man in the Middle attacks. By using a combina-
tion of HTTP and HTTPS, we leave the content served
over HTTP vulnerable to man in the middle attacks.
Compromised content can steal information stored in
cookies, perform stripping attacks or worst modify the
web page’s DOM. To counter MITM and similar at-
tacks, QoS2 leverages the following insight:

HTTPS-Control Channel: must be established to
support secure communication of meta-data.

Content-Checksums: All content served over HTTP
is check-sumed to ensure that the content is not modi-
fied. This checksum is served over the control channel.

Active Versus Passive Content: Active content
can change the contents of a page, e.g. javascript or
CSS, and can be used to perform attacks on user data.
Where as passive content can not execute code or mod-
ify the page, e.g images or videos. QoS2 argues that
only public-passive content should be sent over HTTP,
all other should be sent over HTTPS.

References
[1] Naylor, David, et al. ”The Cost of the S in HTTPS.” Proceedings

of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies. ACM, 2014.

[2] Hodges, Jeff, Collin Jackson, and Adam Barth. ”Http strict
transport security (hsts).” URL: http://tools. ietf.
org/html/draft-ietf-websec-strict-transport-sec-04 (2012).

[3] Kranch, Michael, and Joseph Bonneau. ”Upgrading HTTPS in
mid-air: An empirical study of strict transport security and key
pinning.” (2015).


