FOCUS: Function Offloading from a Controller to Utilize Switch Power

*Duke University, *Xi'an Jiaotong University, *Big Switch Networks

Motivation

An SDN controller faces scalability challenges in a large network.

Existing Solutions

- Hardware optimization: inflexible.
- Distributed controller: control traffic overhead.
- \succ Turn on legacy functions: loss of visibility and control.
- > Execute arbitrary code in switches: heavyweight.

Our Approach

- > Delegate local stable functions with a simple API.
- Example applications: ARP, LLDP and elephant flow detection.

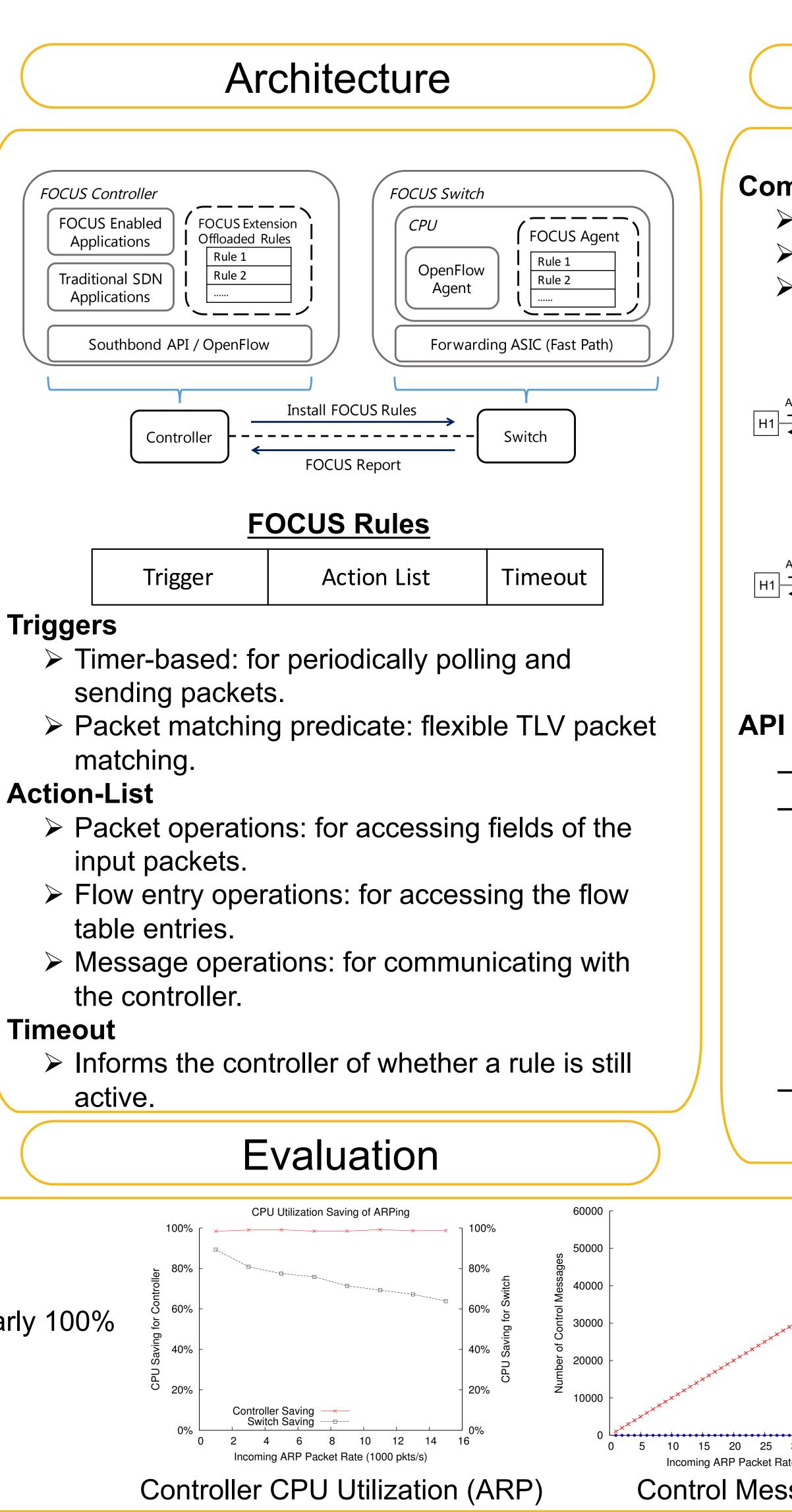
Challenges

Global Visibility

 \succ The controller should keep the identical visibility as before.

Local Decisions

The abstraction should act solely on local information.


No Hardware Modifications

Implement the solution using switch software.

Performance Improvement for ARP

- Computational overhead is reduced by 80% 98%
- \succ Communication overhead is reduced by 50% nearly 100%
- > ARP response time is shortened by 18ms
- > More results for other protocols can be found in our technical report: cs.duke.edu/~zzy/file/focus-report-2016-001.pdf

Ji Yang*+, Zhenyu Zhou*, Theophilus Benson*, Xiaowei Yang*, Xin Wu*, Chengchen Hu+

Examples

Comparison of OpenFlow with FOCUS Workflow Host Discovery (ARP, ICMP for TTL expiration) Topology Maintenance (LLDP) \succ Traffic Statistics (elephant flow detection) Controller Controlle Controlle Periodically Flow stats reply Controlle Controlle Controlle Report when / (S1) 1) LLDF **Elephant Flow Detection** LLDP ARP

API Example (ARP Reply for Default Gateway)

Trigger		Actions
		<i>pkt_compose</i> (ARP)
		get_field(src_MAC)
ARP		<i>set_field</i> (dst_MAC, ret ¹)
target_IP=GW_IP	Р	<i>set_field</i> (target_MAC, ret)
		get_field(src_IP)
		<i>set_field</i> (target_IP, ret)
		<i>pkt_output</i> (in_port)
Original ————————————————————————————————————	50	<pre>pkt_output(in_port)</pre>
Original)ffloading	50 40 -	<pre>pkt_output(in_port)</pre>
offloading	40 -	<pre>pkt_output(in_port)</pre>
Original Offloading (m) / em	40 -	pkt_output(in_port)
offloading	40 - 30 -	pkt_output(in_port)
offloading	40 - 30 - 20 -	pkt_output(in_port)