
Towards a Safe Playground for HTTPS and
MiddleBoxes with QoS2

Zhenyu Zhou
Duke University

zzy@cs.duke.edu

Theophilus Benson
Duke University

tbenson@cs.duke.edu

ABSTRACT
The increase in concern over network privacy has prompted
adoption of HTTPS to sky-rocket with over 50% of
traffic delivered using HTTPS. Unfortunately encryp-
tion HTTPS eliminates the benefits provided by middle-
boxes such as proxies and caches. We claim that these
limitations, highlight the need for alternative mecha-
nisms for quickly and safely viewing websites.

QoS2 argues for fine-grained identification of common
content and user-specific content, which are then deliv-
ered over either HTTP or HTTPS respectively. The
main challenge in enabling QoS2, lies in ensuring that
security is not compromised, namely preventing to Man
in the Middle attacks. QoS2 overcomes these attacks by
judiciously employing object level checksums which are
sent exclusively over an HTTPS connection. To quan-
tify the benefits of QoS2, we have manually tagged con-
tent for a number of sites and emulated an QoS2 server:
initial results are promising with QoS2 providing a 20%-
70% speed up over traditional HTTPS.

CCS Concepts
•Networks → Network security; Network man-
agement; Network experimentation;

Keywords
Network performance; network security; transport layer
security; network management

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotMiddlebox’15, August 17-21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3540-9/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785989.2785998

1. INTRODUCTION
In the wake of the recent breaches in end-user pri-

vacy, by the NSA and other parties [1], the Internet
has grown even more “secure” with content providers,
such as Google, wantonly and indiscriminately employ-
ing HTTPS [2] across all services. According to a re-
cent study [3], over 50% of web content is served over
HTTPS.

This enhanced security comes at an unexpected cost:
the TLS layer and the encryption it provides, renders
middleboxes ineffective. Unfortunately, middleboxes are
crucial for a number of reasons ranging from improved
performance to security. Middleboxes such as caches,
transcoders, and proxies provide tremendous benefits
to end-users (reducing page load times by as much as
50% [4]), and to Internet Service Providers (reducing
network utilization by 33% [5, 6]). Instead, by employ-
ing TLS, these benefits are lost. Essentially, a trade-off
is made between privacy and performance with content
providers forcing end-users to choose privacy over per-
formance.

Existing approaches [7] for enabling these middle-
boxes over HTTPS argue for delegating trust to“Trusted
middleboxes”; these “Trusted middleboxes” are given
special keys that allow them to terminate and split
TLS connections. There are several drawbacks with
these approaches: first, it requires a fork-lift upgrade
of the middleboxes within the existing infrastructure;
and second, once employed these middleboxes provide
users with little control over privacy. Essentially, these
“Trusted middleboxes” can be used to compromise the
user’s privacy. We argue that existing approaches can
be too coarse-grained and provide the end-user with lit-
tle to no control over what is sent in the clear or provide
control at the expense of significant complexity.

In this paper, we try to answer the following question:
Can we develop a framework that reintroduces mid-

dleboxes without requiring delegation of trust?
Interestingly, we observe that middleboxes can be in-

troduced without delegating trust if the content provider
applies fine-grained control over which content is kept
private and thus encrypted (served over HTTPS) and
which is kept public and thus transferred over HTTP.

Our observation is motivated by the fact that the tem-
plate of a website is identical for all users and thus
known. For example, the Facebook logo, base-HTML,
CSS, and several java-script pages are identical for all
users. Given this, we claim that little privacy is lost
if these common objects are sent over clear text (in
HTTP).

The challenge in sending mixed-context, a page with
mixed HTTP and HTTPS objects, is that it leaves the
page vulnerable to Man-in-the-Middle attacks (MitM).
To enable fine-grained control over privacy in a secure
manner, we have developed a new framework called
QoS2. QoS2 allows content providers to determine which
content is privacy (sent over HTTPS), as well as which
is public (sent over HTTP). To prevent MitM, QoS2
generates checksums for all public content and sends
these checksums over a secure HTTPS connection (thus
preventing tampering).

In this paper, we take the first step towards realiz-
ing QoS2 by analyzing the design space and empirically
evaluating the benefits of employing QoS2. Our initial
experiments show that by moving objects in the critical
path from HTTPS to HTTP, QoS2 enables performance
oriented middleboxes to improve page load time by 20%
- 70%.

Roadmap. The rest of this paper is organized as fol-
lows. We present background on middleboxes and TLS
in Section 2; in Section 3, we discuss related works;
in Section 4, we discuss the design space and present
the architecture of QoS2; in Section 5, we evaluate the
potential benefits of QoS2; in Section 6, we discuss de-
ployment challenges; and finally, we conclude with a
discussion of future works and open issues in Section 7.

2. BACKGROUND
In this section, we discuss HTTPS and its implica-

tions on performance, present a brief taxonomy of web-
content, and finally present an overview of the vulner-
abilities of sites with a mixture of HTTP and HTTPS
content (more widely known as mixed-content sites).

2.1 Implications of HTTPS
The increase in adoption of TLS and HTTPS has a

multitudes of benefits and drawbacks. While the bene-
fits are prominent, we find that until recently the draw-
backs have received little attention. In this section, we
highlight the drawbacks of TLS and focus on its implica-
tions for performance and privacy. Websites implement
HTTPS:

1. Blindly: All Objects are retrieved via HTTPS,
regardless of size or privacy of information and in
certain cases these objects unnecessarily incur per-
formance overheads. For example, a recent study
showed that for websites with HTTPS, the TLS
handshake accounts for over 42% of data exchanged [3].

2. With harmful consequences: HTTPS prevents
middleboxes, e.g. caches and transcoders, from in-

specting packets and optimizing end-user perfor-
mance. These can result in a significant increase
in the traffic on the ISP’s links and further increase
page load times.

3. Carelessly: Many sites use HSTS [8] as a mech-
anism for automatically employing HTTPS. How-
ever, over 59% of websites do so incorrectly re-
sulting in security flaws, e.g. redirect to HTTP
domain or improperly set the parameter max-age.
Surprisingly, even the sites that configure HSTS
correctly are vulnerable to a number of attacks due
to stale policies or modifications of time-stamps [9].

2.2 Classification of Web Content
We argue that web-content can be classified based on

its sensitivity or privacy:

1. Public Content: These are the parts of a web-
page which are identical for all users, e.g. java-
script, banner images and CSS. We claim these
aspects are public knowledge: they are identical
for all users and thus knowing the DNS or IP of
the website is sufficient for an adversary to deter-
mine the contents of these objects. Orthogonally,
knowing the content of these objects does not leak
any additional information beyond what is leaked
by the IP or DNS.

2. Private Content: These are the relatively per-
sonalized content which are unique to each user,
e.g. pictures or advertisements. Moreover, these
objects are often non-cacheable, e.g., passwords,
or may incur relatively low cache hit-rates, e.g,
personal pictures and advertisements.

Interestingly, we observe that from a performance
perspective, the public content is the highly cacheable
content where as the private content is highly specific
and often un-cacheable. For example a recent study
from Facebook showed that highly personalized content
is less cacheable within the network [10]. Furthermore,
the public content, e.g. scripts, HTML-XML and im-
ages, accounts for over 50% of the bytes [11]: focusing
solely on them will provide significant benefits.

2.3 MitM: Stripping Attacks
Today, websites exclusively serve content over either

HTTP or HTTPS with very few websites supporting a
mixture of both. In fact, many browsers do not load
websites with mixed-content [9]. Mixed-content web-
sites are dis-encouraged as they leave the websites vul-
nerable to MitM attacks.

The mixture of HTTP and HTTPS, implies that con-
tent served over the HTTP content will be unencrypted
and thus unprotected. An attacker can easily hijack the
HTTP connections and send comprised content to the
user. This compromised content can in turn be used
to steal information stored in cookies or worst modify

the web page’s DOM and thus its appearance. For ex-
ample, an attack can conduct a MitM on the HTTP
connection and use this connection to inject java-script
code to steal information stored in cookies [12].

Takeaways. Web content can be roughly classified
into public and private content. Private content in-
curs low cache hit-rates and should not be cached for
sensitivity issues. To enable caching and other perfor-
mance oriented middlebox optimizations, public con-
tent should be sent over HTTP. Unfortunately, using
a mixture of HTTP and HTTPS leads to a number of
security vulnerabilities.

3. RELATED WORKS
Implications of Middleboxes: There are many re-

cent works [13, 4, 5, 6] demonstrating the importance
of middleboxes within cellular networks and wired net-
works. These middleboxes have been shown to provide
tremendous benefits to both the networks and the end
users. Thus there is a great incentive to ensure that
these middleboxes remain operational. QoS2 presents a
system to achieve just that.

Middleboxes in the Age of HTTPS: The clos-
est related work [7, 14, 15, 16] enables middleboxes by
allowing the end-points to share keys with the middle-
boxes or involve the middleboxes in the key exchange.
Using these resulting keys, the middleboxes are able to
terminate the connection and apply network functions
on the traffic. These approaches fall into two classes: in
the first [7, 14, 15], all traffic is encrypted with one key
and by sharing this key with the middleboxes, the end-
points are forced to delegate all their trust to the third
party middlebox. Where-as in the second [16], the end-
points employs different keys to encrypt different por-
tions of the traffic. By selectively sharing different keys,
the end-points are able to decide which content the mid-
dleboxes has access to. Unlike QoS2, these approaches
require a complex key-exchange protocol and require a
fork-lift upgrade of the in-network middleboxes. QoS2
attacks a different point in the design space, arguing in-
stead that content provider should judiciously apply en-
cryption at a fine granularity rather than sharing keys.
This allows QoS2 to be incrementally deployed but lim-
its the applicability of QoS2 to performance oriented
middleboxes.

Other approaches [17, 18, 19, 20] to enable middle-
boxes on encrypted traffic attack the problem at a lower
layer: transport [17, 18] and network [19, 20]. These ap-
proaches require separate key management schemes.

Orthogonal approaches include BlindBox [21], which
aims to perform a set of middlebox functionality on en-
crypted traffic without decrypting it. While BlindBox
focuses on security oriented middleboxes, QoS2 focuses
on performance oriented middleboxes.

4. RETHINKING WEB-SERVERS
In this section, we explore the design space for re-

architecting secure content delivery and reason about
a strawman approach, QoS2, for enabling the safe co-
existence of TLS with certain middleboxes.

Currently, the web supports two forms of privacy,
w.r.t web pages: the first, no privacy, in which the pages
are served over HTTP; and the second, total privacy, in
which the pages are served over HTTPS.

In previous sections, we argued that these options
are not expressive enough; they either provide privacy
(HTTPS with no middleboxes) or good-performance (HTTP
with middleboxes). Thus, we claim that what is re-
quired is an option that straddles both, providing pri-
vacy with high performance.

One natural way to achieve this option is to split con-
nections up, with content sent over both HTTP and
HTTPS but this has two challenges:

• Overcoming the security issues discussed in Sec-
tion 2.

• Determining which content to send over HTTP
and which to send over HTTPS.

Alternatively, one could encrypt content with dif-
ferent keys and selectively share a subset of these keys
with the middleboxes within the network. Although
this addresses the drawbacks of the previous solution,
this approach compromises forward secrecy, complicates
the protocol, potentially introduces latency overheads,
and requires upgrades of in-network hardware.

In this work, we explore the former: our framework,
QoS2, presented in Figure 1, explicitly addresses both
challenges by proposing enhancements to both the web-
servers and the web-browsers. At a high-level, QoS2
prevents and overcomes MitM attacks by (1) creating
checksums for each object sent over HTTP (2) send-
ing these checksums over an HTTPS connection, and
(3) verifying the objects sent over HTTP against the
checksums transferred over HTTPS.

4.1 QoS2 Web-Servers
A QoS2 web-server is similar to a traditional web

server except in the following ways:

Tagged Content: A QoS2 server accepts tags for the
content served. Content can be tagged as either private
or public, with the default tag being conservatively set
to private. The tags enable the web-server to determine
which content should be sent over HTTP and which over
HTTPS. These tags can be statically or dynamically
assigned. Statically assigning content may be cumber-
some and overwhelming, fortunately, there are a num-
ber of techniques that are immediately amendable to
dynamic create tag. For example, template-extraction
techniques [22] can be used to automatically determine
templates and subsequently tag objets in the template
as public.

Content Checksum: A QoS2 server calculates and
maintains a checksum for each content that is tagged
as public. This checksum is sent to the client alongside

Figure 1: QoS2 architecture.

the object. The checksum enables the client to verify
that the objects sent over HTTP have not been com-
promised. This checksum can be calculated a priori or
calculated at run-time. There are a few trade-offs be-
tween the two: a priori calculation ensures that there
is no additional latency for calculating the checksums
but at the risk of stale checksums. Where-as, runtime
calculation ensures that the checksums are never stale
but incurs additional latency. As part of future work,
we intend to explore both alternatives and make rec-
ommendations as to when one should be used over the
other.

Control Channel: Unlike SPDY and HTTP/2.0 servers
which maintain one connection, the QoS2 server main-
tains at least two connections to every client: a secure
connection (over HTTPS) and an unsecured one (over
HTTP). The server uses the secure connection to trans-
fer both checksums and private content. This ensures
that the checksums are not tampered with.

4.2 QoS2 Enabled clients
A QoS2 enabled client is a web-browser that under-

stands the QoS2 protocol. Namely, the browser under-
stands the use of the HTTPS connection as a control
channel: HTTP requests are sent over the control chan-
nel, as are checksums and private content. In addition
to the normal behavior, the QoS2 client also calculates a
checksum for the content received over HTTP (labeled

2 in Figure 2), and the validation module at client side
verifies the computed checksums against the checksums
received over the control channel(labeled 3 in Figure 2).
Validated content is passed to the normal browser pro-
cessing engine to be parsed, interpreted, and painted
to the screen. Alternatively, checksums may fail for a
number of reasons including: an attack on the HTTP
channel or stale information. When a checksum check
fails, the client re-requests the content (labeled 4 in Fig-
ure 2), and the web-server responds with the content
over the HTTPS connection (labeled 5 in Figure 2). As
part of future works we intend to develop more exten-
sive protocols to disambiguate the two situations and
determine when it is safe to resend through HTTP.

Figure 2: Client browsing in QoS2.

5. EMPIRICAL VALIDATION OF QoS2
In this section, we attempt to quantify the benefits of

QoS2. To do this, we download four websites from the
Alexa-Top 100 list and manually tag content as either
private or public. First we tag all content as private,

Figure 3: Classification of web objects based on privacy.

then manually prune out public content. Note, we do
not claim to tag all public content, thus our numbers
provide a lower bound on the potential benefits of QoS2.

In Figure 3, we present a summary of our classifi-
cation. We observe that all websites contain a non-
negligible fraction of public content with the actual num-
ber varying between 35% to 89%. Regardless, we note
that these numbers are indicative of potential gains.

To determine the actual gains, we emulated QoS2
on our private testbed and examined page load times.
In our testbed, we setup a web server and cache-proxy
both hosted on different servers with 2.00 GHz CPU
and 16 GB of RAM. The web server, caches, and the
web browsers are all interconnected through a 1G Local
Area Network.

To emulate WAN conditions, we use the Linux tc
command [23] on the origin web server and the caches
to inject varying amounts of latency. We vary the la-
tencies between the origin servers, the cache-proxies,
and the web-client. Varying all latencies allows us to
understand how QoS2’s benefits are impacted by the
placement and location of the middleboxes.

In Figure 4, we compare the load time for varying
latencies to the origin server and the potential proxies.
To determine the latency to the origin web server, we
perform latency tests to the Alexa top 100 websites and
select the 10th percentile (25ms), the 50th percentile
(75ms) and the 95th percentile (400ms). For latencies
to the cache, we use trace-routes to determine latencies
with the Metro-Area network. We believe that this can
simulate the real network environment well. Then we
allocate the private or public content at two servers, via
HTTP and HTTPS respectively, and collect the latency
to load the whole page under different conditions.

This latency allows us to understand benefits under
wired networks (with low latencies) and cellular net-
works (with high latencies). We observe a 20% perfor-
mance improvement in low latency networks and a 70%
performance improvement in high latency networks. We
observe that the improvements are function of both the
dependencies between objects and the size of the public
objects.

6. DISCUSSION
Deployment Challenges: QoS2 requires changes

to both the web-servers and the web-browsers. Fortu-
nately, these changes can be easily accomplished with
minor to changes to both. More over, given that SPDY
current supports priority-based tags for content and
performs interesting optimizations to improve load time
based on these tags. We believe that our proposed tag-
ging mechanism can piggy back on existing mechanisms
within the browser.

Tagging Content: The greatest deployment hur-
dle lies in tagging content as either private or public.
As discussed earlier, these burdens can be significantly
reduced by applying variations on traditional template

Figure 4: Analysis of page load times under QoS2.

extraction techniques [22]. All content identified as part
of a template can be tagged as public content.

Incentives for Adoption: The incentives for ISPs
and end-users to leverage infrastructure and tools that
supports QoS2 is quite clear. As both ISPs and end-
users are poised to reap tremendous benefits from the
introduction of QoS2. More concretely, ISPs may get a
30% reduction in traffic and users may gain at least a
50% improvement in page load times. Although content-
provider may be resistant, many content-providers are
determined to reduce page load times [24] and thus are
aptly motived to adopt techniques like QoS2.

Security Oriented Middleboxes: QoS2 explicitly
focuses on performance oriented middleboxes. Yet more
worked is required to enable QoS2 to support security
oriented middleboxes, such as, intrusion detection sys-
tems and deep packet inspection systems

Browser cache: Browser caches operate at the ap-
plication level and are thus unaffected by TLS encryp-
tion. Fortunately, browser caches are orthogonal to
in-network caches with both levels of caching provide
different benefits. QoS2 is explicitly designed to re-
introduce the benefits provided by in-network caches.

Future transport protocols: In light of recent
studies on web performance, a number of novel trans-
port protocols are being developed to improve the per-
formance of secure web browsing, e.g. Quic. Yet, these
protocols fail to explicitly incorporate middleboxes. Fu-
ture work could evaluate QoS2 in the context of such
novel protocols.

7. CONCLUSION AND FUTURE WORKS
In this paper, we argued that instead of coarsely serv-

ing content exclusively over HTTP or HTTPS, content-
provider should be able to determine at a finer-granularity
which content is served over HTTP or HTTPS. We
presented a strawman that enables content providers
and users to safely browse mixed-context websites. We
showed, through empirical evaluations, that this ap-
proach can help improve page load times.

As part of future works, we are planning to extend

QoS2 in a number of ways. First, by exploring tech-
niques to disambiguate between stale checksums and
attacks on the HTTP channel. Our current approach
conflates both and reacts in a heavy handed manner.
Second, by implementing checksum verification in the
browser. Third, by enhancing the nginx and Apache
platforms to support QoS2. Finally, we hope to evalu-
ate QoS2 under a variety of workloads, to understand
how the benefits of QoS2 are impacted by the choices
made by content-providers.

8. ACKNOWLEDGEMENTS
We thank our anonymous reviewers for their thought-

ful comments and feedback. This work was supported
by NSF Award CSR-1409426.

9. REFERENCES
[1] Ball, James and Borger, Julian and Greenwald, Glenn.

Revealed: How US and UK Spy Agencies Defeat
Internet Privacy and Security. The Guardian, 6, 2013.

[2] Tim Dierks. The transport layer security (TLS)
protocol version 1.2. 2008.

[3] David Naylor, Alessandro Finamore, Ilias Leontiadis,
Yan Grunenberger, Marco Mellia, Maurizio Munafò,
Konstantina Papagiannaki, and Peter Steenkiste. The
Cost of the ”S” in HTTPS. In Proceedings of the 10th
ACM International on Conference on Emerging
Networking Experiments and Technologies, CoNEXT
’14, pages 133–140, New York, NY, USA, 2014. ACM.

[4] Xing Xu, Yurong Jiang, Tobias Flach, Ethan
Katz-Bassett, David Choffnes, and Ramesh Govindan.
Investigating Transparent Web Proxies in Cellular
Networks. Passive and Active Measurement
Conference, 2015.

[5] Jeffrey Erman, Alexandre Gerber, Mohammad T.
Hajiaghayi, Dan Pei, and Oliver Spatscheck.
Network-aware Forward Caching. In Proceedings of the
18th International Conference on World Wide Web,
WWW ’09, pages 291–300, New York, NY, USA,
2009. ACM.

[6] Jeffrey Erman, Alexandre Gerber, Mohammad
Hajiaghayi, Dan Pei, Subhabrata Sen, and Oliver
Spatscheck. To Cache or not to Cache: The 3G case.
Internet Computing, IEEE, 15(2):27–34, 2011.

[7] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Gus, D.
Druta and M. Hafeez. Explicit Trusted Proxy in
HTTP/2.0. IETF Internet-Draft, 2014.

[8] Hodges, Jeff and Jackson, Collin and Barth, Adam.
HTTP Strict Transport Security (HSTS). IETF
Internet-Draft, 2012.

[9] Michael Kranch and Joseph Bonneau. Upgrading
HTTPS in mid-air: An empirical study of strict
transport security and key pinning. Network and
Distributed System Security (NDSS) Symposium, 2015.

[10] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C. Li. An Analysis
of Facebook Photo Caching. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 167–181, New
York, NY, USA, 2013. ACM.

[11] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas
Sekar. Understanding Website Complexity:
Measurements, Metrics, and Implications. In

Proceedings of the 2011 ACM SIGCOMM Conference
on Internet Measurement Conference, IMC ’11, pages
313–328, New York, NY, USA, 2011. ACM.

[12] Ping Chen, Nick Nikiforakis, Lieven Desmet, and
Christophe Huygens. A Dangerous Mix: Large-scale
analysis of mixed-content websites. In Proceedings of
the 16th Information Security Conference (ISC), 2013.

[13] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer
Rexford. SoftCell: Scalable and Flexible Cellular Core
Network Architecture. In Proceedings of the Ninth
ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages
163–174, New York, NY, USA, 2013. ACM.

[14] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Bourg,
D. Druta and M. Hafeez. Explicitly authenticated
proxy in HTTP/2.0. IETF Internet-Draft, July 2014.

[15] D. McGrew, D. Wing, Y. Nir and P. Gladstone. TLS
Proxy Server Extension. IETF Internet-Draft, July
2012.

[16] Thomas Fossati, Vijay K. Gurbani and Vladimir
Kolesnikov. Love all, trust few: On trusting
intermediaries in HTTP. In ACM SIGCOMM
Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, 2015.

[17] Andrea Bittau, Michael Hamburg, Mark Handley,
David Mazières, and Dan Boneh. The case for
ubiquitous transport-level encryption. In Proceedings
of the 19th USENIX Conference on Security, USENIX
Security’10, pages 26–26, Berkeley, CA, USA, 2010.
USENIX Association.

[18] A. Bittau, D. Boneh, M. Hamburg, M. Handley, D.
Mazieres and Q. Slack. Cryptographic protection of
TCP streams. IETF Internet-Draft, July 2014.

[19] Sneha Kasera, Semyon Mizikovsky, Ganapathy S.
Sundaram, and Thomas Y. C. Woo. On Securely
Enabling Intermediary-based Services and
Performance Enhancements for Wireless Mobile Users.
In Proceedings of the 2Nd ACM Workshop on Wireless
Security, WiSe ’03, pages 61–68, New York, NY, USA,
2003. ACM.

[20] Yongguang Zhang and Bikramjit Singh. A Multi-Layer
IPSEC Protocol. In USENIX Security Symposium,
volume 9, 2000.

[21] Justine Sherry, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. BlindBox: Deep Packet Inspection
over Encrypted Traffic. In Proceedings of the 2015
ACM SIGCOMM Conference, 2015.

[22] Ziv Bar-Yossef and Sridhar Rajagopalan. Template
Detection via Data Mining and Its Applications. In
Proceedings of the 11th International Conference on
World Wide Web, WWW ’02, pages 580–591, New
York, NY, USA, 2002. ACM.

[23] Bert Hubert. TC–Linux man page.
http://lartc.org/manpages/tc.txt, 2010.

[24] Ashish Vulimiri, Philip Brighten Godfrey, Radhika
Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott
Shenker. Low Latency via Redundancy. In Proceedings
of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT
’13, pages 283–294, New York, NY, USA, 2013. ACM.

