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1 Background

Cloud providers employ Software Defined Networking
to

• simplify network management
• configure networking infrastructure using higher
level abstractions

Decoupling SDN
•SDNApps: Networking functionality
•SDNEnhancements: Optimizations

Figure 1: Introducing SDNEnhancements.

Hidden Danger

However, the SDNEn-
hancements creates a
disconnect between the
SDNApps’ view of the
network and the actual
network state! Figure 2: SDNApps’ View

is Disconnected from the
Actual Network State.

2 Motivation

SDNApps have assumptions to the network

Figure 3: SDNApps’ Assumptions.

Case Study: Hedera
• Improving data center performance by load
balancing elephant flows
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Figure 4: Aggregate Bandwidth and TCAM Usage.

Two fundamental questions remain not answered

Research Questions

What is the right interface for enabling principled
interactions between SDNApps and SDNEnhance-
ments?
What abstractions are required to systematically
include SDNEnhancements into the SDN ecosys-
tem?

3 Design

Main Idea
•Developers simply specify the class of transfor-
mations that are tolerable, or not.

•No requirements to understand all SDNEnhance-
ments.

Analogy to Compiler Optimization:
Compilers for SDNs

Figure 5: Analogy to Compiler Optimization.
(Ref: https://www.cs.cmu.edu/afs/cs/academic/class/15745-s02/www/lectures/lect1.pdf)

•SDN assembly code: low-level control messages
• “Code block”: policies among a certain group of
hosts

•Compilation: SDNEnhancement function
•SDN compiler flags: SDN-Flags

Figure 6: Dissecting SDN-Flags.

Figure 7: SDN-Flags.

The Mozart Orchestrator ensures that SDN-Flags
are respected.

Figure 8: The Mozart Orchestrator.

4 Evaluation

Performance Improvement
•Proactive SDNApp (Hedera): Saves 24.8%
reduction in aggregate bandwidth introduced by
TCAMOptimizer and decreases TCAM usage
saving from 57.5% to 18.2%.
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Figure 9: Aggregate Bandwidth and TCAM Usage.

•Reactive SDNApp (RtFlow): Flows get activated
7.8 times faster at initial ramp of phase and 44.8
times faster regarding to time to recovery.
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Figure 10: Ping Latency in Link Failure Experiment.

Mozart Overhead
•Sublinear.
•Only increases 1.58% to latency.
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Figure 11: (a) Relative Latency of Mozart Compared
to No Mozart in %. (b) Relative Throughput of
Mozart Compared to No Mozart in %.

https://www.cs.cmu.edu/afs/cs/academic/class/15745-s02/www/lectures/lect1.pdf

