
Poster #61: Composing SDN Controller
Enhancements with Mozart

Zhenyu Zhou1,∗ and Theophilus A. Benson2

1Duke University, 2Brown University, ∗Presenter

1 Background

Cloud providers employ Software Defined Networking
to

• simplify network management
• configure networking infrastructure using higher
level abstractions

Decoupling SDN
•SDNApps: Networking functionality
•SDNEnhancements: Optimizations

Figure 1: Introducing SDNEnhancements.

Hidden Danger

However, the SDNEn-
hancements creates a
disconnect between the
SDNApps’ view of the
network and the actual
network state! Figure 2: SDNApps’ View

is Disconnected from the
Actual Network State.

2 Motivation

SDNApps have assumptions to the network

Figure 3: SDNApps’ Assumptions.

Case Study: Hedera
• Improving data center performance by load
balancing elephant flows

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
O
N
E

H
edera

TC
A
M

O
ptim

izer

C
onflictR

esolver

A
LL

 0

 25

 50

 75

 100

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
G

b
p

s
)

T
o

ta
l
N

u
m

b
e

r
o

f
T

C
A

M
 E

n
tr

y
 U

s
a

g
e

Bandwidth Usage TCAM Usage

Figure 4: Aggregate Bandwidth and TCAM Usage.

Two fundamental questions remain not answered

Research Questions

What is the right interface for enabling principled
interactions between SDNApps and SDNEnhance-
ments?
What abstractions are required to systematically
include SDNEnhancements into the SDN ecosys-
tem?

3 Design

Main Idea
•Developers simply specify the class of transfor-
mations that are tolerable, or not.

•No requirements to understand all SDNEnhance-
ments.

Analogy to Compiler Optimization:
Compilers for SDNs

Figure 5: Analogy to Compiler Optimization.
(Ref: https://www.cs.cmu.edu/afs/cs/academic/class/15745-s02/www/lectures/lect1.pdf)

•SDN assembly code: low-level control messages
• “Code block”: policies among a certain group of
hosts

•Compilation: SDNEnhancement function
•SDN compiler flags: SDN-Flags

Figure 6: Dissecting SDN-Flags.

Figure 7: SDN-Flags.

The Mozart Orchestrator ensures that SDN-Flags
are respected.

Figure 8: The Mozart Orchestrator.

4 Evaluation

Performance Improvement
•Proactive SDNApp (Hedera): Saves 24.8%
reduction in aggregate bandwidth introduced by
TCAMOptimizer and decreases TCAM usage
saving from 57.5% to 18.2%.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
one

H
edera

TC
A
M

-O
P
T

TC
A
M

-O
P
T+M

ozart

C
R

C
R
+M

ozart

TC
A
M

-O
P
T/C

R

TC
A
M

-O
P
T/C

R
+M

ozart

 0

 25

 50

 75

 100

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
G

b
p

s
)

T
o

ta
l
N

u
m

b
e

r
o

f
T

C
A

M
 E

n
tr

y
 U

s
a

g
e

Bandwidth Usage TCAM Usage

Figure 9: Aggregate Bandwidth and TCAM Usage.

•Reactive SDNApp (RtFlow): Flows get activated
7.8 times faster at initial ramp of phase and 44.8
times faster regarding to time to recovery.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

N
u
m

b
e
r

o
f
A

c
ti
v
e
 P

in
g
s

Time Since Start (s)

PF Tag Set
No PF Tag Set

Figure 10: Ping Latency in Link Failure Experiment.

Mozart Overhead
•Sublinear.
•Only increases 1.58% to latency.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

R
e
la

ti
v
e
 L

a
te

n
c
y
 o

f
M

o
z
a
rt

C
o
m

p
a
re

d
 t
o
 N

o
 M

o
z
a
rt

 i
n
 %

Number of Extensions

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

R
e
la

ti
v
e
 T

h
ro

u
g
h
p
u
t
o
f
M

o
z
a
rt

C

o
m

p
a
re

d
 t
o
 N

o
 M

o
z
a
rt

 i
n
 %

Number of Extensions

(a) (b)
Figure 11: (a) Relative Latency of Mozart Compared
to No Mozart in %. (b) Relative Throughput of
Mozart Compared to No Mozart in %.

https://www.cs.cmu.edu/afs/cs/academic/class/15745-s02/www/lectures/lect1.pdf

