Definition: A language \(L \) is recursively enumerable if there exists a TM \(M \) such that \(L = L(M) \).

\[
\begin{align*}
\text{if } w \in L & \text{ if } w \not\in L \\
\end{align*}
\]

Definition: A language \(L \) is recursive if there exists a TM \(M \) such that \(L = L(M) \) and \(M \) halts on every \(w \in \Sigma^+ \).

Enumeration procedure for recursive languages

To enumerate all \(w \in \Sigma^+ \) in a recursive language \(L \):

- Let \(M \) be a TM that recognizes \(L \); \(L = L(M) \).
- Construct 2-tape TM \(M' \)
 - Tape 1 will enumerate the strings in \(\Sigma^+ \)
 - Tape 2 will enumerate the strings in \(L \).
 - On tape 1 generate the next string \(v \) in \(\Sigma^+ \)
 - simulate \(M \) on \(v \)
 - if \(M \) accepts \(v \) then write \(v \) on tape 2.

Enumeration procedure for recursively enumerable languages

To enumerate all \(w \in \Sigma^+ \) in a recursively enumerable language \(L \):

Repeat forever

- Generate next string (Suppose \(k \) strings have been generated: \(w_1, w_2, \ldots, w_k \))
- Run \(M \) for one step on \(w_k \)
 - Run \(M \) for two steps on \(w_{k-1} \).
 - ...
 - Run \(M \) for \(k \) steps on \(w_1 \).
 - If any of the strings are accepted then write them to tape 2.

Theorem For any nonempty \(\Sigma^+ \) there exist languages that are not recursively enumerable.

Proof:
• A language is a subset of Σ^*.
 The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \overline{L} is not recursively enumerable.

Proof:

• Let $\Sigma = \{a\}$
 Enumerate all TM’s over Σ:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>aa</th>
<th>aaa</th>
<th>aaaa</th>
<th>aaaaa</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(M_1)$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_3)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_4)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_5)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable but not recursive.

Theorem If languages L and \overline{L} are both RE then L is recursive.

Proof:

• There exists an M_1 such that M_1 can enumerate all elements in L.
 There exists an M_2 such that M_2 can enumerate all elements in \overline{L}.
 To determine if a string w is in L or not in L perform the following algorithm:
Theorem: If L is recursive, then \overline{L} is recursive.

Proof:

- L is recursive then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L and outputs a 0 if a string w is not in L.

Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1 then M' erases the 1 and writes a 0. If TM M halts with a 0 then M' erases the 0 and writes a 1.

Hierarchy of Languages:

![Hierarchy of Languages Diagram]

Definition A grammar $G=(V,T,R,S)$ is *unrestricted* if all productions are of the form

$$u \rightarrow v$$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$

Example:

Let $G=(\{S,A,I,X\}|(a|b)|I|R|S)$ FR =

- $S \rightarrow bAaX$
- $bAa \rightarrow abA$
- $AX \rightarrow \epsilon$

Example Find an unrestricted grammar G s.t. $L(G) = \{a^n b^n c^n | n > 0 \}$

$G=(V,T,I,R,S)$

$V=\{S,A,B,I,D,E,X\}$
There are some rules missing in the grammar.
To derive string $aaaabbbccc$ use productions 1, 2, and 3 to generate a string that has the correct number of a’s b’s and c’s. The a’s will all be together but the b’s and c’s will be intertwined.

$$S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcbcX \Rightarrow aaaBbcbcbcX$$

Theorem If G is an unrestricted grammar then $L(G)$ is recursively enumerable.

Proof:

- List all strings that can be derived in one step.

 List all strings that can be derived in two steps.

Theorem If L is recursively enumerable then there exists an unrestricted grammar G such that $L=L(G)$.

Proof:

- L is recursively enumerable.
 \[\Rightarrow\] there exists a TM M such that $L(M)=L$.
 \[M = (K,\Sigma,\Gamma,\delta,q_0,B,F)\]
 \[q_0w \vdash x_1q_1x_2\text{ for some }q_f \in \Gamma x_1, x_2 \in \Gamma^*\]
Construct an unrestricted grammar \(G \) s.t. \(L(G) = L(M) \).

\(S \Rightarrow w \)

Three steps

1. \(S \Rightarrow B \ldots B \# x q y B \ldots B \)
 with \(x q y \in \Gamma^* \) for every possible combination
2. \(B \ldots B \# x q y B \ldots B \Rightarrow B \ldots B \# q_w B \ldots B \)
3. \(B \ldots B \# q_w B \ldots B \Rightarrow w \)

Definition A grammar \(G \) is *context-sensitive* if all productions are of the form

\[
x \rightarrow y
\]

where \(x, y \in (V \cup T)^+ \) and \(|x| < |y| \)

Definition \(L \) is context-sensitive (CSL) if there exists a context-sensitive grammar \(G \) such that \(L = L(G) \) or \(L = L(G) \cup \{ \epsilon \} \).

Theorem For every CSL \(L \) not including \(\epsilon \Gamma \exists \) an LBA \(M \) s.t. \(L = L(M) \).

Theorem If \(L \) is accepted by an LBA \(M \Gamma \) then \(\exists \) CSG \(G \) s.t. \(L(M) = L(G) \).

Theorem Every context-sensitive language \(L \) is recursive.

Theorem There exists a recursive language that is not CSL.