Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Review

Consider the CFG G:

$$
S \rightarrow Aa \\
A \rightarrow AA | ABa | \epsilon \\
B \rightarrow BBa | b | \epsilon
$$

Is ba in $L(G)$? Running time?

Remove ϵ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

$$
S \rightarrow Aa | a \\
A \rightarrow AA | ABa | Aa | Ba | a \\
B \rightarrow BBa | Ba | a | b
$$

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string.

$$S \rightarrow aS \mid b$$

- Examples: LL Parser, Recursive Descent

Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

\[G = (V, T, R, S) \]
\[w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_T \in (V \cup T)^+ \]

Definition: \(\text{FIRST}(w) = \) the set of terminals that begin strings derived from \(w \).

If \(w \xrightarrow{*} av \) then

- \(a \) is in \(\text{FIRST}(w) \)

If \(w \xrightarrow{*} \epsilon \) then

- \(\epsilon \) is in \(\text{FIRST}(w) \)

To compute FIRST:

1. \(\text{FIRST}(a) = \{a\} \)
2. \(\text{FIRST}(X) \)
 (a) If \(X \rightarrow aw \) then
 - \(a \) is in \(\text{FIRST}(X) \)
 (b) If \(X \rightarrow \epsilon \) then
 - \(\epsilon \) is in \(\text{FIRST}(X) \)
 (c) If \(X \rightarrow Aw \) and \(\epsilon \in \text{FIRST}(A) \) then
 - Everything in \(\text{FIRST}(w) \) is in \(\text{FIRST}(X) \)
3. In general, \(\text{FIRST}(X_1X_2X_3..X_K) = \)
 - \(\text{FIRST}(X_1) \)
 - \(\cup \text{FIRST}(X_2) \) if \(\epsilon \) is in \(\text{FIRST}(X_1) \)
 - \(\cup \text{FIRST}(X_3) \) if \(\epsilon \) is in \(\text{FIRST}(X_1) \)
 and \(\epsilon \) is in \(\text{FIRST}(X_2) \)
 - \(\cdots \)
 - \(\cup \text{FIRST}(X_k) \) if \(\epsilon \) is in \(\text{FIRST}(X_1) \)
 and \(\epsilon \) is in \(\text{FIRST}(X_2) \)
 \(\cdots \) and \(\epsilon \) is in \(\text{FIRST}(X_{K-1}) \)
 - \(\{-\} \) if \(\epsilon \notin \text{FIRST}(X_J) \) for all \(J \)
Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1\} \)

\[
\begin{align*}
S & \rightarrow aSc \mid B \\
B & \rightarrow b \mid \epsilon
\end{align*}
\]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =

Example

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow dB \mid \epsilon \\
D & \rightarrow cA \mid \epsilon \\
E & \rightarrow e \mid fE
\end{align*}
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If $S \Rightarrow wAav$ then

a is in FOLLOW(A)

(where w and v are strings of terminals and variables, a is a terminal, and A is a variable)

To compute FOLLOW:

1. $\$$ is in FOLLOW(S)
2. If $A \rightarrow wBv$ and $v \neq \epsilon$ then

 FIRST(v) - $\{\epsilon\}$ is in FOLLOW(B)
3. IF $A \rightarrow wB$ OR

 $A \rightarrow wBv$ and ϵ is in FIRST(v) then

 FOLLOW(A) is in FOLLOW(B)
4. ϵ is never in FOLLOW
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \epsilon \]

FOLLOW(S) =
FOLLOW(B) =

Example:

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \epsilon \]
\[C \rightarrow dB \mid \epsilon \]
\[D \rightarrow cA \mid \epsilon \]
\[E \rightarrow e \mid fE \]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =