Pushdown Automata

A DFA = (K, Σ, δ, q₀, F)

Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).

Definition: Nondeterministic PDA (NPDA) is defined by

\[M = (K, \Sigma, \delta, q₀, z, F) \]

where

- K is finite set of states
- Σ is tape (input) alphabet
- \(\delta \) is stack alphabet
- q₀ is initial state
- z is start stack symbol (bottom of stack marker)
- F ⊆ K is set of final states
- \(\Delta \) is a finite subset of \((K × (\Sigma \cup \{ε\}) ×, *) × (K ×, *) \)
Example of transitions

\[\Delta(q_1,a,b) = \{ (q_1,b),(q_4,ab),(q_6,\varepsilon) \} \]

Meaning: If in state \(q_1 \) with “a” the current tape symbol and “b” the symbol on top of the stack, then pop “b”, and either

- move to \(q_3 \) and push “b” on stack
- move to \(q_4 \) and push “ab” on stack (“a” on top)
- move to \(q_6 \)

Transitions can be represented using a transition diagram.

The diagram for the above transitions is:

Each arc is labeled by a triple: \(x,y,z \) where \(x \) is the current input symbol, \(y \) is the top of stack symbol which is popped from the stack, and \(z \) is a string that is pushed onto the stack.

Instantaneous Description (configuration):

\((q,w,u)\)

Notation to describe the current state of the machine \((q)\), unread portion of the input string \((w)\), and the current contents of the stack \((u)\).

Description of a Move:

\[(q_1,aw,bx) \rightarrow (q_2,w,yx) \quad \text{iff} \]

Definition Let \(M=(K,\Sigma, =, \Delta, q_0, F) \) be a NPDA. \(L(M) = \{ w \in \Sigma^* \mid (q_0,w,z) \xrightarrow{\ast} (p, \varepsilon, u), p \in F, u \in \Sigma^* \} \). The NPDA accepts all strings that start in \(q_0 \) and end in a final state.
Example: \(L = \{a^n b^n | n \geq 0 \}, \Sigma = \{a, b\}, \epsilon = \{z, a\} \)

Another Definition for Language Acceptance

NPDA \(M \) accepts \(L(M) \) by empty stack:

\[
L(M) = \{ w \in \Sigma^* | (q_0, w, z)^* \overset{\epsilon}{\Rightarrow} (p, \epsilon, \epsilon) \}
\]

Example: \(L = \{w w^R | w \in \Sigma^+ \}, \Sigma = \{a, b\}, \epsilon = \{z, a, b\} \)
Example: \(L = \{ w w \mid w \in \Sigma^* \} \), \(\Sigma = \{ a, b \} \)

Examples for you to try on your own: (solutions are at the end of the handout).

- \(L = \{ a^n b^m \mid m > n, m, n > 0 \} \), \(\Sigma = \{ a, b \} \), \(= \{ z, a \} \)
- \(L = \{ a^n b^{n+m} c^m \mid n, m > 0 \} \), \(\Sigma = \{ a, b, c \} \)
- \(L = \{ a^n b^{2n} \mid n > 0 \} \), \(\Sigma = \{ a, b \} \)

Theorem Given NPDA \(M \) that accepts by final state, \(\exists \) NPDA \(M' \) that accepts by empty stack s.t. \(L(M) = L(M') \).

- **Proof** (sketch)
 \[M = (K, \Sigma, \Delta, q_0, z, F) \]
 Construct \(M' = (K', \Sigma, \Delta', q_0, z', F') \)

Theorem Given NPDA \(M \) that accepts by empty stack, \(\exists \) NPDA \(M' \) that accepts by final state.

- **Proof**: (sketch)
 \[M = (K, \Sigma, \Delta, q_0, z, F) \]
 Construct \(M' = (K', \Sigma, \Delta', q_0, z', F') \)
Theorem For any CFL L not containing ϵ, \exists an NPDA M s.t. $L=L(M)$.

- **Proof** (sketch)

 Given (ϵ-free) CFL L.

 $\Rightarrow \exists$ CFG G such that $L=L(G)$.

 $\Rightarrow \exists$ G’ in GNF, s.t. $L(G)=L(G')$.

 $G’=(V,T,R,S)$. All productions in R are of the form:

 Example: Let $G’=(V,T,R,S)$, $R=$

 $S \rightarrow aSA \mid aAA \mid b$
 $A \rightarrow bBBB$
 $B \rightarrow b$
Theorem Given a NPDA M, \(\exists \) a NPDA M’ s.t. all transitions have the form \(\Delta(q_i,a,A)=\{c_1,c_2,\ldots,c_n\} \) where

\[
c_i=(q_j,\epsilon)
\]
or
\[
c_i=(q_j,BC)
\]

Each move either increases or decreases stack contents by a single symbol.

- **Proof** (sketch)

Theorem If \(L=L(M) \) for some NPDA M, then \(L \) is a CFL.

- **Proof:** Given NPDA M.
 First, construct an equivalent NPDA M that will be easier to work with. Construct M’ such that

 1. accepts if stack is empty
 2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

M’=(K,\(\Sigma \),, \(\Delta,q_0,z,F \))

Construct G=(V,\(\Sigma \),R,S) where

V={} \((q_i,cq_j) | q_i,q_j \in K, c \in \epsilon \)

\((q_i,cq_j) \) represents “starting at state \(q_i \) the stack contents are \(cw, w \in \epsilon, \star \), some path is followed to state \(q_j \) and the contents of the stack are now \(w \)”.

Goal: \((q_0,zq_f) \) which will be the start symbol in the grammar.

Meaning: We start in state \(q_0 \) with \(z \) on the stack and process the input tape. Eventually we will reach the final state \(q_f \) and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).
Example:

$L(M) = \{aa^*b\}, M = (K, \Sigma, \Delta, q_0, z, F), K = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b, z\}, F = \{\}. M$ accepts by empty stack.

Construct the grammar $G = (V, T, R, S)$,

$V = \{(q_0Aq_0), (q_0zq_0), (q_0Aq_1), (q_0zq_1), \ldots\}$

$T = \Sigma$

$S = (q_0zq_2)$

$R =$

From transition 1 $(q_0Aq_1) \rightarrow b$
From transition 2 $(q_1zq_2) \rightarrow \epsilon$
From transition 3 $(q_0Aq_3) \rightarrow a$
From transition 4 $(q_0zq_0) \rightarrow a(q_0Aq_0)(q_0zq_0)$
$a(q_0Aq_1)(q_1zq_0)$
$a(q_0Aq_2)(q_2zq_0)$
$a(q_0Aq_3)(q_3zq_0)$
$(q_0zq_1) \rightarrow a(q_0Aq_0)(q_0zq_1)$
$a(q_0Aq_1)(q_1zq_1)$
$a(q_0Aq_2)(q_2zq_1)$
$(q_0zq_3) \rightarrow a(q_0Aq_0)(q_0zq_3)$
$a(q_0Aq_1)(q_1zq_3)$
$a(q_0Aq_2)(q_2zq_3)$
From transition 5 $(q_2zq_0) \rightarrow (q_0Aq_0)(q_0zq_0)$
$(q_0Aq_1)(q_1zq_0)$
$(q_0Aq_2)(q_2zq_0)$
$(q_0Aq_3)(q_3zq_0)$
$(q_3zq_1) \rightarrow (q_0Aq_0)(q_0zq_1)$
$(q_0Aq_1)(q_1zq_1)$
$(q_0Aq_2)(q_2zq_1)$
$(q_2zq_2) \rightarrow (q_0Aq_0)(q_0zq_2)$
$(q_0Aq_1)(q_1zq_2)$
$(q_0Aq_2)(q_2zq_2)$
$(q_3zq_3) \rightarrow (q_0Aq_0)(q_0zq_3)$
$(q_0Aq_1)(q_1zq_3)$
$(q_0Aq_2)(q_2zq_3)$
$(q_0Aq_3)(q_3zq_3)$
Recognizing aaab in M:

\[(q_0, aaab, z) \rightarrow (q_0, aab, Az) \]
\[(q_0, ab, z) \rightarrow (q_0, b, Az) \]
\[(q_1, \\
\]

Derivation of string aaab in G:

\[(q_0zq_2) \rightarrow a(q_0Aq_3)(q_3zq_2) \]
\[\rightarrow aazq_2 \]
\[\rightarrow aaz(q_0Aq_1)(q_1zq_2) \]
\[\rightarrow aaazq_2 \]
\[\rightarrow aaab(q_1zq_2) \]
\[\rightarrow aaab \]

Definition: A PDA M=(K,Σ,, δ,q₀,z,F) is deterministic if for every q ∈ K, a ∈ Σ ∪ {ε}, b ∈ ,

1. δ(q,a,b) contains at most 1 element
2. if δ(q,ε,b) ≠ ∅ then δ(q,c,b)=∅ for all c ∈ Σ

Definition: L is DCFL iff ∃ DPDA M s.t. L=L(M).

Examples:

1. Previous pda for \{a^n b^n | n ≥ 0\} is deterministic.
2. Previous pda for \{a^n b^m c^{n+m} | n, m > 0\} is deterministic.
3. Previous pda for \{ww^r | w ∈ Σ^+, Σ = \{a, b\}\} is nondeterministic.

Note: There are CFL’s that are not deterministic.

L={a^n b^n | n ≥ 1} ∪ \{a^n b^{2n} | n ≥ 1\} is a CFL and not a DCFL.

Proof: L = \{a^n b^n : n ≥ 1\} ∪ \{a^n b^{2n} : n ≥ 1\}

It is easy to construct a NPDA for \{a^n b^n : n ≥ 1\} and a NPDA for \{a^n b^{2n} : n ≥ 1\}. These two can be joined together by a new start state and ε-transitions to create a NPDA for L. Thus, L is CFL.

Now show L is not a DCFL. Assume that there is a deterministic PDA M such that L = L(M). We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

Construct a PDA M’ as follows:

1. Create two copies of M: M₁ and M₂. The same state in M₁ and M₂ are called cousins.
2. Remove accept status from accept states in M₁, remove initial status from initial state in M₂. In our new PDA, we will start in M₁ and accept in M₂.
3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both $a^n b^n$ and $a^n b^{2n}$. After reading n b's, must accept if no more b's and continue if there are more b's.

4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

This is the construction of our new PDA.

When we read $a^n b^n$ and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of $a^n b^{2n}$. Only the b's in M_2 have been replaced by c's, so the new machine accepts $a^n b^n c^n$.

The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M) = L$. Q.E.D.

Example: $L = \{a^n b^m | m > n, m, n > 0\}$, $\Sigma = \{a, b\}$, $\delta = \{z, a\}$

Example: $L = \{a^n b^{m+c} | n, m > 0\}$, $\Sigma = \{a, b, c\}$.

Example: $L = \{a^n b^{2n} | n > 0\}$, $\Sigma = \{a, b\}$