Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:

Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms

Definition of TM

- Storage
 - tape
• actions
 – write symbol
 – read symbol
 – move left (L) or right (R)

• computation
 – initial configuration
 * start state
 * tape head on leftmost tape square
 * input string followed by blanks
 – processing computation
 * move tape head left or right
 * read from and write to tape
 – computation halts
 * final state

Formal Definition of TM

A TM M is defined by $M = (K, \Sigma, \delta, q_0, B, F)$ where

• K is finite set of states
• Σ is input alphabet
• , is tape alphabet
• $B \in \Sigma$ is blank
• q_0 is start state
• F is set of final states
• δ is transition function
 $\delta(q,a) = (p,b,R)$ means “if in state q with the tape head pointing to an ‘a’, then move into state p, write a ‘b’ on the tape and move to the right”.

TM as Language recognizer

Definition: Configuration is denoted by \vdash. If $\delta(q,a) = (p,b,R)$ then a move is denoted

\[
abaaqbba \vdash ababpbba
\]

Definition: Let M be a TM, $M = (K, \Sigma, \delta, q_0, B, F)$. $L(M) = \{ w \in \Sigma^* | q_0 w \vdash^* x_1 q_f x_2$ for some $q_f \in F, x_1, x_2 \in \Sigma^* \}$
TM as language acceptor

M is a TM, w is in Σ^*,

- if $w \in L(M)$ then M halts in final state
- if $w \notin L(M)$ then either
 - M halts in non-final state
 - M doesn’t halt

Example:

$L = \{a^n b^n c^n | n \geq 1\}$

Is the following TM correct?

TM as a transducer

TM can implement a function: $f(w) = w'$

- start with: w
 \[\uparrow\]

- end with: w'
 \[\uparrow\]

Definition: A function with domain D is *Turing-computable* or *computable* if there exists TM $M = (Q, \Sigma, \delta, q_0, B, F)$ such that

$$q_0w \xrightarrow{*} q_j f(w)$$

$q_j \in F$, for all $w \in D$.

Example:

\(f(x) = 2x \)

\(x \) is a unary number

start with: 111

\[\uparrow \]

end with: 111111

\[\uparrow \]

Is the following TM correct?

Example:

\(L = \{ww \mid w \in \Sigma^+\}, \Sigma = \{a, b\} \)