Graphs: Structures and Algorithms

- **How do packets of bits/information get routed on the internet**
 - Message divided into packets on client (your) machine
 - Packets sent out using routing tables toward destination
 - Packets may take different routes to destination
 - What happens if packets lost or arrive out-of-order?
 - Routing tables store local information, not global (why?)

- **What about The Oracle of Bacon, Six Degrees of Separation, Erdos Numbers, and Word Ladders?**
 - All can be modeled using graphs
 - What kind of connectivity does each concept model?

- **Graphs are everywhere in the world of algorithms (world?)**
Vocabulary

- **Graphs are collections of vertices and edges**
 - Vertex is sometimes called a *node*
 - An edge connects two *vertices*
 - Direction is sometimes important, other times not so
 - Sometimes edge has a weight/cost associated with it

- A sequence of vertices $v_0, v_1, v_2, \ldots, v_{n-1}$ is a *path* where v_k and v_{k+1} are connected by an edge.
 - If some vertex is repeated, the path is a *cycle*
 - Trees are cycle-free graphs with a root
 - A graph is *connected* if there is a path between any pair of vertices
 - Non-connected graphs have *connected components*
Graph Traversals

- **Connected?**
 - Why?
 - Indegrees? Outdegrees?

- **Starting at 7 where can we get?**
 - *Depth-first* search, envision each vertex as a room, with doors leading out
 - Go into a room, choose a door, mark the door and go out
 - Don’t go into a room you’ve already been in
 - Backtrack and open the next unopened door
 - Rooms are stacked up, backtracking is really recursion
 - One alternative uses a queue: *breadth-first* search
Pseudo-code for depth-first search

```cpp
void depthfirst(const string& vertex)
// post: depth-first search from vertex complete
{
    if (! alreadySeen(vertex))
    {
        markAsSeen(vertex);
        cout << vertex << endl;
        for (each v adjacent to vertex)
        {
            depthfirst(v);
        }
    }
}
```

- Clones are stacked up, problem? When are all doors out of vertex opened and visited? Can we make use of stack explicit?
Graph implementations

• Typical operations on graph:
 ➤ Add vertex
 ➤ Add edge (parameters?)
 ➤ AdjacentVerts(vertex)
 ➤ AllVerts(..)
 ➤ String->int (vice versa)

• Different kinds of graphs
 ➤ Lots of vertices, few edges, *sparse* graph
 • Use adjacency list
 ➤ Lots of edges (max # ?) *dense* graph
 • Use adjacency matrix

Adjacency list
Graph implementations (continued)

- **Adjacency matrix**
 - Every possible edge represented, how many?

- **Adjacency list uses O(V+E) space**
 - What about matrix?
 - Which is better?

- What do we do to get adjacent vertices for given vertex?
 - What is complexity?
 - Compared to adjacency list?

- What about weighted edges?
Other graph questions/operations

- What vertices are reachable from a given vertex
 - Can depth-first search help here?

- What vertex has the highest in-degree (out-degree)?
 - How can we use a map to answer this question?

- Shortest path between any two vertices
 - Breadth first search is storage expensive
 - Dijkstra’s algorithm will offer an alternative, uses a priority queue too!

- Longest path in a graph
 - No known efficient algorithm
Breadth first search

- In an unweighted graph this finds the shortest path between a start vertex and every vertex
 - Visit every node one away from start
 - Visit every node two away from start
 - This is every node one away from a node one away
 - Visit every node three away from start

- Like depth first search, but use a queue instead of a stack
 - What features of a queue ensure shortest path?
 - Stack can be simulated with recursion, advantages?
 - How many vertices on the stack/queue?
void breadthfirst(const string& vertex)
 // post: breadth-first search from vertex complete
{
 tqueue<string> q;
 q.enqueue(vertex);
 while (q.size() > 0)
 {
 q.dequeue(current);
 for (each v adjacent to current)
 {
 if (distance[v] == INFINITY) // not seen
 {
 distance[v] = distance[current] + 1;
 q.enqueue(v);
 }
 }
 }
}
What about word ladders

- **Find a path from white->house changing one letter**
 - Real world? Computer vs. human?
 - white write writs waits warts parts ports forts forte
 - ... rouse house
 - See ladder.cpp program

- **How is this a graph problem? What are vertices/edges?**
- **What about spell-checking, how is it similar?**
 - Edge from accomodate to accommodate
 - Can also use tries with wild-cards, e.g., acc*date
What about connected components?

- What computers are reachable from this one? What people are reachable from me via acquaintanceship?
 - Start at some vertex, depth-first search (why not breadth)?
 - Mark nodes visited
 - Repeat, starting from an unvisited vertex (until all visited)

- What is minimal size of a component? Maximal size?
 - What is complexity of algorithm in terms of V and E?

- What algorithms does this lead to in graphs?
Shortest path in weighted graph

• **We need to modify approach slightly for weighted graph**
 - Edges have weights, breadth first by itself doesn’t work
 - What’s shortest path from A to F in graph below?

• **Use same idea as breadth first search**
 - Don’t add 1 to current distance, add ???
 - Might adjust distances more than once
 - What vertex do we visit next?

• **What vertex is next is key**
 - Use greedy algorithm: closest
 - Huffman is greedy, …
Greedy Algorithms

- A greedy algorithm makes a locally optimal decision that leads to a globally optimal solution
 - Huffman: choose two nodes with minimal weight, combine
 - Leads to optimal coding, optimal Huffman tree
 - Making change with American coins: choose largest coin possible as many times as possible
 - Change for $0.63, change for $0.32
 - What if we’re out of nickels, change for $0.32?

- Greedy doesn’t always work, but it does sometimes
- Weighted shortest path algorithm is Dijkstra’s algorithm, greedy and uses priority queue
Edsger Dijkstra

- Turing Award, 1972
- Operating systems and concurrency
- Algol-60 programming language
- Goto considered harmful
- Shortest path algorithm
- Structured programming
 “Program testing can show the presence of bugs, but never their absence”
- A Discipline of programming
 “For the absence of a bibliography I offer neither explanation nor apology”
Dijkstra’s Shortest Path Algorithm

• Similar to breadth first search, but uses a priority queue instead of a queue. Code below is for breadth first search

```c
q.dequeue(vertex w)
foreach (vertex v adjacent to w)
    if (distance[v] == INT_MAX) // not visited
    {
        distance[v] = distance[w] + 1;
        q.enqueue(v);
    }
```

• Dijkstra: Find minimal unvisited node, recalculate costs through node

```c
q.deletemin(vertex w)
foreach (vertex v adjacent to w)
    if (distance[w] + weight(w,v) < distance[v])
    {
        distance[v] = distance[w] + weight(w,v);
        q.enqueue(vertex(v, distance[v]));
    }
```
Shortest paths, more details

- **Single-source shortest path**
 - Start at some vertex S
 - Find shortest path to every reachable vertex from S

- **A set of vertices is processed**
 - Initially just S is processed
 - Each pass processes a vertex

 After each pass, shortest path from S to any vertex using just vertices from processed set (except for last vertex) is always known

- Next processed vertex is closest to S still needing processing
Dijkstra’s algorithm works (greedily)

- Choosing minimal unseen vertex to process leads to shortest paths

```plaintext
q.deleteMin(vertex w)
foreach (vertex v adjacent to w)
    if (distance[w] + weight(w,v) < distance[v])
        { distance[v] = distance[w] + weight(w,v);
          q.enqueue(vertex(v, distance[v]));
        }
```

- We always know shortest path through processed vertices
 - When we choose w, there can’t be a shorter path to w than distance[w] – it would go through processed u, then we would have chosen u instead of w
Topological sort

- Given a directed acyclic graph (DAG)
 - Order vertices so that any if there is an edge (v,w), then v appears before w in the order

- Prerequisites for a major, take CPS 100 before CPS 130
 - Edge(cps100,cps130)
 - Topological sort gives an ordering for taking courses

- Where does ordering start?
 - First vertex has no prereqs
 - “remove” this vertex, continue
 - Depends on in-degree