Wordcounting, sets, and the web

- How does Google store all web pages that include a reference to “peanut butter with mustard”
 - What efficiency issues exist?
 - Why is Google different (better)?

- How do wordcount.cpp and linkcount.cpp differ?
 - Mechanisms for insertion and search
 - How do we discuss these?

- If we stick with linked lists, how can we improve search?
 - Where do we want to find things?
 - What do thumb indexes do in a dictionary?

Analysis: Algorithms and Data Structures

- We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
 - What’s the best way to sort, why?
 - What’s the best way to search, why?
 - How do we discuss these questions?

- We need both empirical tests and analytical/mathematical reasoning
 - Given two methods, which is better? Run them.
 - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
 - Which is better? Analyze them.
 - Use mathematics to analyze the algorithm, the implementation is another matter

Empirical and Theoretical results

- We run the program to time it (e.g., using CTimer)
 - What do we use as data? Why does this matter
 - What do we do about the kind of machine being used?
 - What about the load on the machine?

- Use mathematical/theoretical reasoning, e.g., sequential search
 - The algorithm takes time linear in the size of the vector
 - Double size of vector means double the time
 - What about searching twice, is this still linear?

- We use big-Oh, a mathematical notation for describing a class of functions

Toward O-notation (big-Oh)

- We investigated two recursive reverse-a-linked-list function (see revlist.cpp). The cost model was “next dereferences”
 - Cost (n) = 2n + 1 + Cost (n-1) for loop function
 - Cost (n) = 5 + Cost (n-1) non-loop
 - How do these compare when n = 1000? What about a closed-form solution rather than a recurrence relation?

- What about
 - \(C(n) = n^2 + 2n - 2 \)
 - \(C(n) = 5n - 4 \)

- How do we derive these?

<table>
<thead>
<tr>
<th>n</th>
<th>Loop Cost</th>
<th>Non-loop Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>10,108</td>
<td>4,096</td>
</tr>
<tr>
<td>1000</td>
<td>1,001,198</td>
<td>4,996</td>
</tr>
</tbody>
</table>
Asymptotic Analysis

- We want to compare algorithms and methods. We care more about what happens when the input size doubles than about what the performance is for a specific input size
 - How fast is binary search? Sequential search?
 - If vector doubles, what happens to running time?
 - We analyze in the limit, or for “large” input sizes
- But we do care about performance: what happens if we search once vs. one thousand times?
 - What about machine speed: 300 Mhz vs 1Ghz?
 - How fast will machines get? Moore’s law
- We also care about space, but we’ll first talk about time

What is big-Oh about?

- Intuition: avoid details when they don’t matter, and they don’t matter when input size (N) is big enough
 - For polynomials, use only leading term, ignore coefficients
 - $y = 3x$
 - $y = 6x - 2$
 - $y = 15x + 44$
 - $y = x^2$
 - $y = x^3 - 6x + 9$
 - $y = 3x^4 + 4x$
- The first family is $O(n)$, the second is $O(n^2)$
 - Intuition: family of curves, generally the same shape
 - More formally: $O(f(n))$ is an upper-bound, when n is large enough the expression $c_0 f(n)$ is larger
 - Intuition: linear function: double input, double time, quadratic function: double input, quadruple the time

More on O-notation, big-Oh

- Running time for input of size N is 10N or 2N or N + 1
 - Running time is $O(N)$, call this linear
 - Big-Oh hides/obscures some empirical analysis, but is good for general description of algorithm
 - Allows us to compare algorithms in the limit
 - 20N hours vs N^2 microseconds
- O-notation is an upper-bound, this means that N is $O(N)$, but it is also $O(N^2)$ however, we try to provide tight bounds
 - What is complexity of binary search?
 - What is complexity of linear search?
 - What is complexity of selection sort?
 - Bubble Sort, Quick sort, other sorts?

Running times @ 10^6 instructions/sec

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000003</td>
<td>0.0001</td>
<td>0.000033</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>0.000007</td>
<td>0.0001</td>
<td>0.0000664</td>
<td>0.0001</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000010</td>
<td>0.0010</td>
<td>0.001000</td>
<td>1.0</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000013</td>
<td>0.0100</td>
<td>0.132900</td>
<td>1.7 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000017</td>
<td>0.1000</td>
<td>1.661000</td>
<td>2.7 hr</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000020</td>
<td>1.0</td>
<td>19.9</td>
<td>11.6 day</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000030</td>
<td>16.7 min</td>
<td>18.3 hr</td>
<td>318 centuries</td>
</tr>
</tbody>
</table>
Determining complexity with big-Oh

- runtime, space complexity refers to mathematical notation for algorithm (not really to code, but ok)
- typical examples:

```java
sum = 0; for(k=0; k < n; k++) {
    if (a[k] == key) sum++; } return sum;
```

```java
for(j=k+1; j < n; j++)
    if (a[j] < a[min]) min = j; Swap(a[min], a[k]);
```

- what are complexities of these?

Multiplying and adding big-Oh

- Suppose we do a linear search then we do another one
 - What is the complexity?
 - If we do 100 linear searches?
 - If we do n searches on a vector of size n?

- What if we do binary search followed by linear search?
 - What are big-Oh complexities? Sum?
 - What about 50 binary searches? What about n searches?

- What is the number of elements in the list (1,2,2,3,3,3)?
 - What about (1,2, ..., n,n,...,n)?
 - How can we reason about this?

Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is \(\log(1024)\)?
 - \(\log(xy) = \log(x) + \log(y)\)
 - \(\log(2^n) = n\log(2)\)
 - \(2^{(\log n)}\)

- Sums (also, use sigma notation when possible)
 - \(1 + 2 + 4 + 8 + ... + 2^k = 2^{k+1} - 1\)
 - \(1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}\)
 - \(a + ar + ar^2 + ... + ar^{n-1} = a(r^n - 1)/(r-1)\)

Different measures of complexity

- Worst case
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?

- Average case
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?

- Best case
 - Linear search, useful?
Recurrences

- Counting nodes
  ```c
  int length(Node * list)
  {
    if (0 == list) return 0;
    else return 1 + length(list->next);
  }
  ```
- What is complexity? justification?
 - $T(n) = \text{time to compute length for an n-node list}$
 - $T(n) = T(n-1) + 1$
 - $T(0) = 1$
- instead of 1, use $O(1)$ for constant time
 - independent of n, the measure of problem size

Solving recurrence relations

- plug, simplify, reduce, guess, verify?
 - $T(n) = T(n-1) + 1$
 - $T(0) = 1$
 - $T(n) = T(n-2) + 1 + 1$
 - $= [T(n-3) + 1] + 1 + 1$
 - $= T(n-k) + k$
 - find the pattern!

Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms
- What is CS person: programmer, scientist, engineer?
 - scientists build to learn, engineers learn to build
- Mathematics is a notation that helps in thinking, discussion, programming

Complexity Practice

- What is complexity of Build? (what does it do?)
  ```c
  Node * Build(int n)
  {
    if (0 == n) return 0;
    else {
      Node * first = new Node(n, Build(n-1));
      for(int k = 0; k < n-1; k++)
        first = new Node(n, first);
    }
    return first;
  }
  ```
- Write an expression for $T(n)$ and for $T(0)$, solve.