Wordcounting, sets, and the web

- How does Google store all web pages that include a reference to “peanut butter with mustard”
 - What efficiency issues exist?
 - Why is Google different (better)?

- How do wordcount.cpp and linkcount.cpp differ?
 - Mechanisms for insertion and search
 - How do we discuss these?

- If we stick with linked lists, how can we improve search?
 - Where do we want to find things?
 - What do thumb indexes do in a dictionary?
Analysis: Algorithms and Data Structures

- We need a vocabulary to discuss performance and to reason about alternative algorithms and implementations
 - What’s the best way to sort, why?
 - What’s the best way to search, why?
 - How do we discuss these questions?

- We need both empirical tests and analytical/mathematical reasoning
 - Given two methods, which is better? Run them.
 - 30 seconds vs. 3 seconds, easy. 5 hours vs. 2 minutes, harder
 - Which is better? Analyze them.
 - Use mathematics to analyze the algorithm, the implementation is another matter
Empirical and Theoretical results

- **We run the program to time it (e.g., using CTimer)**
 - What do we use as data? Why does this matter?
 - What do we do about the kind of machine being used?
 - What about the load on the machine?

- **Use mathematical/theoretical reasoning, e.g., sequential search**
 - The algorithm takes time linear in the size of the vector
 - Double size of vector means double the time
 - What about searching twice, is this still linear?

- **We use big-Oh, a mathematical notation for describing a class of functions**
We investigated two recursive reverse-a-linked-list function (see revlist.cpp). The cost model was “->next dereferences”

- \(\text{Cost}(n) = 2n + 1 + \text{Cost}(n-1) \) for loop function
- \(\text{Cost}(n) = 5 + \text{Cost}(n-1) \) non-loop
- How do these compare when \(n = 1000 \)? What about a closed-form solution rather than a recurrence relation?

What about

\[
\text{C}(n) = n^2 + 2n - 2
\]
\[
\text{C}(n) = 5n - 4
\]

How do we derive these?

<table>
<thead>
<tr>
<th>n</th>
<th>Loop Cost</th>
<th>Non-loop Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>21</td>
</tr>
<tr>
<td>100</td>
<td>10,198</td>
<td>496</td>
</tr>
<tr>
<td>1000</td>
<td>1,001,198</td>
<td>4,996</td>
</tr>
</tbody>
</table>
Asymptotic Analysis

- We want to compare algorithms and methods. We care more about what happens when the input size doubles than about what the performance is for a specific input size.
 - How fast is binary search? Sequential search?
 - If vector doubles, what happens to running time?
 - We analyze in the limit, or for “large” input sizes.

- But we do care about performance: what happens if we search once vs. one thousand times?
 - What about machine speed: 300 Mhz vs 1Ghz?
 - How fast will machines get? Moore’s law

- We also care about space, but we’ll first talk about time
What is big-Oh about?

- Intuition: avoid details when they don’t matter, and they don’t matter when input size (N) is big enough
 - For polynomials, use only leading term, ignore coefficients

 \[
 \begin{align*}
 y &= 3x & y &= 6x - 2 & y &= 15x + 44 \\
 y &= x^2 & y &= x^2 - 6x + 9 & y &= 3x^2 + 4x
 \end{align*}
 \]

- The first family is \(O(n) \), the second is \(O(n^2) \)
 - Intuition: family of curves, generally the same shape
 - More formally: \(O(f(n)) \) is an upper-bound, when \(n \) is large enough the expression \(c_0 f(n) \) is larger
 - Intuition: linear function: double input, double time, quadratic function: double input, quadruple the time
More on O-notation, big-Oh

- Running time for input of size N is $10N$ or $2N$ or $N + 1$
 - Running time is $O(N)$, call this linear
 - Big-Oh hides/obscures some empirical analysis, but is good for general description of algorithm
 - Allows us to compare algorithms *in the limit*
 - $20N$ hours vs N^2 microseconds

- O-notation is an upper-bound, this means that N is $O(N)$, but it is also $O(N^2)$ however, we try to provide *tight* bounds
 - What is *complexity* of binary search:
 - What is complexity of linear search:
 - What is complexity of selection sort:
 - Bubble Sort, Quick sort, other sorts?
Running times @ 10^6 instructions/sec

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000003</td>
<td>0.0001</td>
<td>0.000033</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>0.000007</td>
<td>0.0010</td>
<td>0.000664</td>
<td>0.1000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000010</td>
<td>0.0010</td>
<td>0.010000</td>
<td>1.0</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000013</td>
<td>0.0100</td>
<td>0.132900</td>
<td>1.7 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000017</td>
<td>0.1000</td>
<td>1.661000</td>
<td>2.78 hr</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000020</td>
<td>1.0</td>
<td>19.9</td>
<td>11.6 day</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000030</td>
<td>16.7 min</td>
<td>18.3 hr</td>
<td>318 centuries</td>
</tr>
</tbody>
</table>
Determining complexity with big-Oh

- **runtime, space complexity** refers to mathematical notation for algorithm (not really to code, but ok)

- **typical examples:**

```cpp
sum = 0;
for(k=0; k < n; k++)
{
    if (a[k] == key) sum++;
}
return sum;
```

```cpp
for(k=0; k < n; k++)
{
    min = k;
    for(j=k+1; j < n; j++)
    {
        if (a[j] < a[min]) min = j;
        Swap(a[min], a[k]);
    }
}
```

- **what are complexities of these?**
Multiplying and adding big-Oh

● Suppose we do a linear search then we do another one
 ➤ What is the complexity?
 ➤ If we do 100 linear searches?
 ➤ If we do n searches on a vector of size n?

● What if we do binary search followed by linear search?
 ➤ What are big-Oh complexities? Sum?
 ➤ What about 50 binary searches? What about n searches?

● What is the number of elements in the list (1,2,2,3,3,3)?
 ➤ What about (1,2,2,...,n,n,...,n)?
 ➤ How can we reason about this?
Helpful formulae

- We always mean base 2 unless otherwise stated
 - What is \(\log(1024) \)?
 - \(\log(xy) = \log(x^y) = \log(2^n) = 2^{\log n} \)

- Sums (also, use sigma notation when possible)
 - \(1 + 2 + 4 + 8 + \ldots + 2^k = 2^{k+1} - 1 \)
 - \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \)
 - \(a + ar + ar^2 + \ldots + ar^{n-1} = \frac{a(r^n - 1)}{r-1} \)
Different measures of complexity

- **Worst case**
 - Gives a good upper-bound on behavior
 - Never get worse than this
 - Drawbacks?

- **Average case**
 - What does average mean?
 - Averaged over all inputs? Assuming uniformly distributed random data?
 - Drawbacks?

- **Best case**
 - Linear search, useful?
Recurrences

- Counting nodes

```c
int length(Node * list)
{
    if (0 == list) return 0;
    else return 1 + length(list->next);
}
```

- What is complexity? justification?

- \(T(n) = \) time to compute length for an \(n \)-node list

 \[
 T(n) = T(n-1) + 1 \\
 T(0) = 1
 \]

- instead of 1, use \(O(1) \) for constant time

 ➤ independent of \(n \), the measure of problem size
Solving recurrence relations

- plug, simplify, reduce, guess, verify?

\[
T(n) = T(n-1) + 1 \\
T(0) = 1
\]

\[
T(n) = [T(n-2) + 1] + 1 \\
= [(T(n-3) + 1) + 1] + 1
\]

\[
= T(n-k) + k \quad \text{find the pattern!}
\]

- get to base case, solve the recurrence
Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer?
 scientists build to learn, engineers learn to build

- Mathematics is a notation that helps in thinking, discussion, programming
Complexity Practice

● What is complexity of Build? (what does it do?)

```c
Node * Build(int n)
{
    if (0 == n) return 0;
    else {
        Node * first = new Node(n, Build(n-1));
        for(int k = 0; k < n-1; k++)
        {
            first = new Node(n,first);
        }
        return first;
    }
}
```

● Write an expression for T(n) and for T(0), solve.