Solving Problems Recursively

- Recursion is an indispensable tool in a programmer’s toolkit
 - Allows many complex problems to be solved simply
 - Elegance and understanding in code often leads to better programs: easier to modify, extend, verify (and sometimes more efficient! See expotest.cpp)
 - Sometimes recursion isn’t appropriate, when it’s bad it can be very bad—every tool requires knowledge and experience in how to use it

- The basic idea is to get help solving a problem from coworkers (clones) who work and act like you do
 - Ask clone to solve a simpler but similar problem
 - Use clone’s result to put together your answer
- Need both concepts: call on the clone and use the result

Exponentiation

- Computing x^n means multiplying n numbers (or does it?)
 - What’s the easiest value of n to compute x^n?
 - If you want to multiply only once, what can you ask a clone?

```cpp
double Power(double x, int n) {  // post: returns x^n
if (n == 0) {
    return 1.0;
}
return x * Power(x, n-1);  
}
```

- What about an iterative version?

Print words entered, but backwards

- Can use a vector, store all the words and print in reverse order
 - The vector is probably the best approach, but recursion works too

```cpp
void PrintReversed() {  // reading succeeded?
    string word;
    if (cin >> word) {
        PrintReversed();  // print the rest reversed
        cout << word << endl;  // then print the word
    }
}
```

```cpp
int main() {
    PrintReversed();
}
```

- The function `PrintReversed` reads a word, prints the word only after the clones finish printing in reverse order
 - Each clone has its own version of the code, its own `word` variable

Faster exponentiation

- How many recursive calls are made to compute 2^{1024}?
 - How many multiplies on each call? Is this better?

```cpp
double Power(double x, int n) {  // post: returns x^n
if (n == 0) {
    return 1.0;
}
if (n % 2 == 0) {
    double semi = Power(x, n/2);
    return semi * semi;
}
return x * semi * semi;
}
```

- What about an iterative version of this function?
Recursive and Iterative log powers

- In the program expotest.cpp we calculate x^n using log(n) multiplications (basically). We do this both iteratively and recursively using BigInt variables
 - We saw the iterative code in Chapter 5 with doubles
 - BigInt has overloaded operators so these values work like ints and doubles
 - We use the CTtimer class to time the difference in using these functions (ctimer.h)

- The recursive version is faster, sometimes much faster
 - Using doubles we wouldn’t notice a difference
 - Artifact of algorithm? Can we “fix the problem”? Natural version of both in programs, optimizing tough.

Blob Counting: Recursion at Work

- Blob counting is similar to what’s called Flood Fill, the method used to fill in an outline with a color (use the paint-can in many drawing programs to fill in)
 - Possible to do this iteratively, but hard to get right
 - Simple recursive solution

- Suppose a slide is viewed under a microscope
 - Count images on the slide, or blobs in a gel, or ...
 - Erase noise and make the blobs more visible

- To write the program we’ll use a class CharBitMap which represents images using characters
 - The program blobs.cpp and class Blobs are essential too

Counting blobs, the first slide

```
prompt> blobs
enter row col size 10 50
# pixels on: between 1 and 500: 200
```

- How many blobs are there? Blobs are connected horizontally and vertically, suppose a minimum of 10 cells in a blob
 - What if blob size changes?

Identifying Larger Blobs

```
blob size (0 to exit) between 0 and 50: 10
.................1................................
...............111................................
................1.................................
...............11.................................
...............111............2...................................1.............2...................
...............111...33.......2...................
.................1...3........222.22..............................11..3333........222...............
....................33.3333.......................
```

- The class Blobs makes a copy of the CharBitMap and then counts blobs in the copy, by erasing noisy data (essentially)
 - In identifying blobs, too-small blobs are counted, then uncounted by erasing them
Identifying smaller blobs

blob size (0 to exit) between 0 and 50: 5

....1............2................................
....1.1........222....................................111.....333.2.......................4....................33..22......................444....5............33333.222............6.......44.....555...

blobs = 8

- What might be a problem if there are more than nine blobs?
 - Issues in looking at code: how do language features get in the way of understanding the code?
 - How can we track blobs, e.g., find the largest blob?

Issues that arise in studying code

- What does static mean, values defined in Blobs?
 - Class-wide values rather than stored once per object
 - All Blob variables would share PIXEL_OFF, unlike myBlobCount which is different in every object
 - When is static useful?

- What is the class tmatrix?
 - Two-dimensional vector, use a[0][1] instead of a[0]
 - First index is the row, second index is the column

- We’ll study these concepts in more depth, a minimal understanding is needed to work on blobs.cpp

Recursive helper functions

- Client programs use Blobs::FindBlobs to find blobs of a given size in a CharBitMap object
 - This is a recursive function, private data is often needed/used in recursive member function parameters
 - Use a helper function, not accessible to client code, use recursion to implement member function

- To find a blob, look at every pixel, if a pixel is part of a blob, identify the entire blob by sending out recursive clones/scouts
 - Each clone reports back the number of pixels it counts
 - Each clone “colors” the blob with an identifying mark
 - The mark is used to avoid duplicate (unending) work

Conceptual Details of BlobFill

- Once a blob pixel is found, four recursive clones are “sent out” looking horizontally and vertically, reporting pixel count
 - How are pixel counts processed by clone-sender?
 - What if all the clones ultimately report a blob that’s small?

- In checking horizontal/vertical neighbors what happens if there aren’t four neighbors? Is this a potential problem?
 - Who checks for valid pixel coordinates, or pixel color?
 - Two options: don’t make the call, don’t process the call

- Non-recursive member function takes care of looking for blobsign, then filling/counting/unfilling blobs
 - How is unfill/uncount managed?
Saving blobs

- In current version of `Blobs::FindBlobs` the blobs are counted
 - What changes if we want to store the blobs that are found?
 - How can clients access the found blobs?
 - What is a blob, does it have state? Behavior?
 - What happens when a new minimal blob size is specified?

- Why are the Blob class declaration, member function implementations, and main function in one file?
 - Advantages in using? `blobs.h`, `blobs.cpp`, `dolobs.cpp`?
 - How does Makefile or IDE take care of managing multiple file projects/programs?

Back to Recursion

- Recursive functions have two key attributes
 - There is a base case, sometimes called the exit case, which does not make a recursive call
 - See print reversed, exponentiation, factorial for examples
 - All other cases make a recursive call, with some parameter or other measure that decreases or moves towards the base case
 - Ensure that sequence of calls eventually reaches the base case
 - “Measure” can be tricky, but usually it’s straightforward

- Example: sequential search in a vector
 - If first element is search key, done and return
 - Otherwise look in the “rest of the vector”
 - How can we recurse on “rest of vector”?

Classic examples of recursion

- For some reason, computer science uses these examples:
 - Factorial: we can use a loop or recursion (see `facttest.cpp`), is this an issue?
 - Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, …
 - F(n) = F(n-1) + F(n-2), why isn’t this enough? What’s needed?
 - Classic example of bad recursion, to compute F(6), the sixth Fibonacci number, we must compute F(5) and F(4). What do we do to compute F(5)? Why is this a problem?
 - Towers of Hanoi
 - N disks on one of three pegs, transfer all disks to another peg, never put a disk on a smaller one, only on larger
 - Every solution takes “forever” when N, number of disks, is large

Fibonacci: Don’t do this recursively

```cpp
long RecFib(int n)
// precondition: 0 <= n
// postcondition: returns the n-th Fibonacci number
{
  if (0 == n || 1 == n)
    { return 1;
  } else
    { return RecFib(n-1) + RecFib(n-2);
  }
}
```

- How many clones/calls to compute F(5)?
- How many calls of F(1)?
- How many total calls?
- See `recfib2.cpp` for caching code
Towers of Hanoi

- The origins of the problem/puzzle may be in the far east
 - Move n disks from one peg to another in a set of three

```cpp
void Move(int from, int to, int aux, int numDisks)
// pre: numDisks on peg # from,
// post: disks moved from peg 'from'
// to peg 'to' via 'aux'
{
    if (numDisks == 1) {
        cout << "move " << from << " to " << to << endl;
    } else {
        Move (from, aux, to, numDisks - 1);
        Move (from, to, aux, 1);
        Move (aux, to, from, numDisks - 1);
    }
}
```

What’s better: recursion/iteration?

- There’s no single answer, many factors contribute
 - Ease of developing code assuming other factors ok
 - Efficiency (runtime or space) can matter, but don’t worry about efficiency unless you know you have to
- In some examples, like Fibonacci numbers, recursive solution does extra work, we’d like to avoid the extra work
 - Iterative solution is efficient
 - The recursive inefficiency of “extra work” can be fixed if we remember intermediate solutions: static variables
- Static function variable: maintain value over all function calls
 - Local variables constructed each time function called

Fixing recursive Fibonacci: recfib2.cpp

```cpp
long RecFib(int n)
// precondition: 0 <= n <= 30
// postcondition: returns the n-th Fibonacci number
{
    static tvector<int> storage(31, 0);
    if (0 == n || 1 == n)     return 1;
    else if (storage[n] != 0) return storage[n];
    else {
        storage[n] = RecFib(n-1) + RecFib(n-2);
        return storage[n];
    }
}
```

- What does storage do? Why initialize to all zeros?
 - Static variables initialized first time function called
 - Maintain values over calls, not reset or re-initialized

Thinking recursively

- Problem: find the largest element in a vector
 - Iteratively: loop, remember largest seen so far
 - Recursive: find largest in [1..n), then compare to 0th element

```cpp
double Max(const tvector<double>& a)
// pre: a contains a.size() elements, 0 < a.size()
// post: return maximal element of a
{
    int k; double max = a[0];
    for(k=0; k < a.size(); k++)
    {   if (max < a[k]) max = a[k];
        return max;
    }
}
```

- In a recursive version what is base case, what is measure of problem size that decreases (towards base case)?
Recursive Max

double RecMax(const tvector<double>& a, int first)
// pre: a contains a.size() elements, 0 < a.size() // first < a.size() // post: return maximal element a[first..size()-1]
{
 if (first == a.size()-1) // last element, done
 { return a[first]; }
 double maxAfter = RecMax(a,first+1);
 if (maxAfter < a[first]) return a[first];
 else return maxAfter;
}

● What is base case (conceptually)?
● We can use RecMax to implement Max as follows
 return RecMax(a,0);

Recognizing recursion:

void Change(tvector<int>& a, int first, int last)
// post: a is changed
{
 if (first < last)
 {
 int temp = a[first]; // swap a[first], a[last]
 a[first] = a[last];
 a[last] = temp;
 Change(a, first+1, last-1);
 }
}
// original call (why?): Change(a, 0, a.size()-1);

● What is base case? (no recursive calls)
● What happens before recursive call made?
● How is recursive call closer to the base case?

More recursion recognition

int Value(const tvector<int>& a, int index)
// pre: ?? // post: a value is returned
{
 if (index < a.size())
 {
 return a[index] + Value(a,index+1);
 }
 return 0;
}
// original call: cout << Value(a,0) << endl;

● What is base case, what value is returned?
● How is progress towards base case realized?
● How is recursive value used to return a value?
● What if a is vector of doubles, does anything change?

One more recognition

void Something(int n, int& rev)
// post: rev has some value based on n
{
 if (n != 0)
 {
 rev = (rev*10) + (n % 10);
 Something(n/10, rev);
 }
}
int Number(int n)
{
 int value = 0;
 Something(n,value);
 return value;
}

● What is returned by Number(13) ? Number(1234) ?
 ➢ This is a tail recursive function, last statement recursive
 ➢ Can turn tail recursive functions into loops very easily
Non-recursive version

```c
int Number(int n)
// post: return reverse of n, e.g., 4231 for n==1234
{
    int rev = 0;    // rev is reverse of n’s digits so far
    while (n != 0)
    {
        rev = (rev * 10) + n % 10;
        n /= 10;
    }
}
```

- Why did recursive version need the helper function?
 - Where does initialization happen in recursion?
 - How is helper function related to idea above?
- Is one of these easier to understand?
- What about developing rather than recognizing?