Graphs: Structures and Algorithms

- How do packets of bits/information get routed on the internet
 - Message divided into packets on client (your) machine
 - Packets sent out using routing tables toward destination
 - Packets may take different routes to destination
 - What happens if packets lost or arrive out-of-order?
 - Routing tables store local information, not global (why?)

- What about The Oracle of Bacon, Six Degrees of Separation, Erdos Numbers, and Word Ladders?
 - All can be modeled using graphs
 - What kind of connectivity does each concept model?

- Graphs are everywhere in the world of algorithms (world?)

Vocabulary

- Graphs are collections of vertices and edges
 - Vertex is sometimes called a node
 - An edge connects two vertices
 - Direction is sometimes important, other times not so
 - Sometimes edge has a weight/cost associated with it

- A sequence of vertices \(v_0, v_1, v_2, ..., v_{n-1} \) is a path where \(v_k \) and \(v_{k+1} \) are connected by an edge.
 - If some vertex is repeated, the path is a cycle
 - Trees are cycle-free (acyclic) graphs with a root
 - A graph is connected if there is a path between any pair of vertices
 - Non-connected graphs have connected components

Graph Traversals

- Connected?
 - Why?
 - Indegrees? Outdegrees?

- Starting at 7 where can we get?
 - Depth-first search, envision each vertex as a room, with doors leading out
 - Go into a room, choose a door, mark the door and go out
 - Don’t go into a room you’ve already been in
 - Backtrack when all doors marked and open next unopened door
 - Rooms are stacked up, backtracking is really recursion
 - One alternative uses a queue: breadth-first search

Pseudo-code for depth-first search

```cpp
void depthfirst(const string& vertex)
// post: depth-first search from vertex complete
{
    if (! alreadySeen(vertex))
    {
        markAsSeen(vertex);
        cout << vertex << endl;
        for(each v adjacent to vertex)
        {
            depthfirst(v);
        }
    }
}
```

- Clones are stacked up, problem? When are all doors out of vertex opened and visited? Can we make use of stack explicit?
Graph implementations

- Typical operations on graph:
 - Add vertex
 - Add edge (parameters?)
 - AdjacentVerts(vertex)
 - AllVerts(..)
 - String->int (vice versa)

- Different kinds of graphs
 - Lots of vertices, few edges, *sparse* graph
 - Use adjacency list
 - Lots of edges (max # ?), *dense* graph
 - Use adjacency matrix

Graph implementations (continued)

- Adjacency matrix
 - Every possible edge represented, how many?
- Adjacency list uses $O(V+E)$ space
 - What about matrix?
 - Which is better?

- What do we do to get adjacent vertices for given vertex?
 - What is complexity?
 - Compared to adjacency list?

- What about weighted edges?

Other graph questions/operations

- What vertices are reachable from a given vertex
 - Can depth-first search help here?

- What vertex has the highest in-degree (out-degree)?
 - How can we use a map to answer this question?

- Shortest path between any two vertices
 - Breadth first search is storage expensive
 - Dijkstra’s algorithm will offer an alternative, uses a priority queue too!

- Longest path in a graph
 - No known efficient algorithm

Breadth first search

- In an unweighted graph this finds the shortest path between a start vertex and every vertex
 - Visit every node one away from start
 - Visit every node two away from start
 - This is every node one away from a node one away
 - Visit every node three away from start

- Like depth first search, but use a queue instead of a stack
 - What features of a queue ensure shortest path?
 - Stack can be simulated with recursion, advantages?
 - How many vertices on the stack/queue?
Pseudocode for breadth first

```cpp
void breadthfirst(const string& vertex) // post: breadth-first search from vertex complete
{
    tqueue<string> q; q.enqueue(vertex);
    while (q.size() > 0)
    {
        q.dequeue(current);
        for (each v adjacent to current)
        {
            if (distance[v] == INFINITY) // not seen
            {
                distance[v] = distance[current] + 1;
                q.enqueue(v);
            }
        }
    }
}
```

What about word ladders

- Find a path from white->house changing one letter
 - Real world? Computer vs. human?
 * white write writs waits parts ports forts forte
 * ... rouse house
 - See ladder.cpp program
- How is this a graph problem? What are vertices/edges?
- What about spell-checking, how is it similar?
 - Edge from accomodate to accommodate
 - Can also use tries with wild-cards, e.g., acc*date

What about connected components?

- What computers are reachable from this one? What people are reachable from me via acquaintanceship?
 - Start at some vertex, depth-first search (why not breadth)?
 * Mark nodes visited
 * Repeat, starting from an unvisited vertex (until all visited)
- What is minimal size of a component? Maximal size?
 - What is complexity of algorithm in terms of V and E?
- What algorithms does this lead to in graphs?

Shortest path in weighted graph

- We need to modify approach slightly for weighted graph
 - Edges have weights, breadth first by itself doesn’t work
 - What’s shortest path from A to F in graph below?
- Use same idea as breadth first search
 - Don’t add 1 to current distance, add ???
 - Might adjust distances more than once
 - What vertex do we visit next?
- What vertex is next is key
 - Use greedy algorithm: closest
 - Huffman is greedy, ...
Greedy Algorithms

- A greedy algorithm makes a locally optimal decision that leads to a globally optimal solution
 - Huffman: choose two nodes with minimal weight, combine
 - Leads to optimal coding, optimal Huffman tree
 - Making change with American coins: choose largest coin possible as many times as possible
 - Change for $0.63, change for $0.32
 - What if we’re out of nickels, change for $0.32?

- Greedy doesn’t always work, but it does sometimes
- Weighted shortest path algorithm is Dijkstra’s algorithm, greedy and uses priority queue

Dijkstra’s Shortest Path Algorithm

- Similar to breadth first search, but uses a priority queue instead of a queue. Code below is for breadth first search

```java
q.dequeue(vertex w)
foreach (vertex v adjacent to w)
if (distance[v] == INT_MAX)        // not visited
{                               
    distance[v] = distance[w] + 1;
    q.enqueue(v);
}
```

- Dijkstra: Find minimal unvisited node, recalculate costs through node

```java
q.deleteMin(vertex w)
foreach (vertex v adjacent to w)
if (distance[w] + weight(w,v) < distance[v])
{                               
    distance[v] = distance[w] + weight(w,v);
    q.enqueue(vertex(v, distance[v]));
}
```

Shortest paths, more details

- Single-source shortest path
 - Start at some vertex S
 - Find shortest path to every reachable vertex from S
- A set of vertices is processed
 - Initially just S is processed
 - Each pass processes a vertex
 - After each pass, shortest path from S to any vertex using just vertices from processed set (except for last vertex) is always known
- Next processed vertex is closest to S still needing processing
Dijkstra’s algorithm works (greedily)

- Choosing minimal unseen vertex to process leads to shortest paths

```
q.deleteMin(vertex w)
foreach (vertex v adjacent to w)
  if (distance[w] + weight(w, v) < distance[v])
    distance[v] = distance[w] + weight(w, v);
q.enqueue(vertex(v, distance[v]));
```

- We always know shortest path through processed vertices
 ➤ When we choose \(w \), there can’t be a shorter path to \(w \) than \(\text{distance}[w] \) – it would go through processed \(u \), then we would have chosen \(u \) instead of \(w \)

Topological sort

- Given a directed acyclic graph (DAG)
 ➤ Order vertices so that any if there is an edge \((v, w)\), then \(v \) appears before \(w \) in the order

```
void topologicalSort(Graph G)
{
  ArbitrarySet fringe;
  count[v] = G.inDegree(v);
  for ( i=0; i < G.vertexSize(); i++)
    if ((count[v] = G.inDegree(i)) == 0)
      fringe.add(v);
  // topological sort traversal
  while (!fringe.isEmpty()) {
    Vertex v1 = fringe.removeAny();
    result.pushback(v1);
    foreach edge w (v, w) {
      count[w]--;
      if (count[w] == 0)
        fringe.add(w);
    }
  }
}
```

Minimum Spanning Trees

- Minimum weight spanning tree (MST) properties
 ➤ Subgraph of a given undirected graph with edge weights
 ➤ Contains all vertices of a given graph
 ➤ Minimizes the sum of its edge weights

- How do we find the MST of a graph?
 ➤ Key insight:
 ➤ If the vertices of a connected graph \(G \) are divided into two disjoing non-empty sets \(G_0 \) and \(G_1 \), then any MST for \(G \) will contain one of the edges running between a vertex in \(G_0 \) and a vertex in \(G_1 \) that has minimal weight

- Solution
 ➤ Prim’s algorithm
 ➤ Kruskal’s algorithm