Data Compression

- Why do we care?
 - Secondary storage capacity doubles every year
 - However, disk space fills up quickly on every computer system
 - More data to compress than ever before
- What’s the difference between compression for .mp3 files and compression for .zip files? Between .gif and .jpg?
- Must we exactly reconstruct the data?
 - Lossy methods
 - Generally fine for pictures, video, and audio (JPEG, MPEG, etc.)
 - Lossless methods
 - Run-length encoding
 - Text compression
- Is it possible to compress (lossless compression rather than lossy) every file? Every file of a given size?

Priority Queue

- Compression motivates the study of the ADT priority queue
 - Supports two basic operations
 - insert -- an element into the priority queue
 - delete -- the minimal element from the priority queue
 - Implementations may allow getmin separate from delete
 - Analogous to top/pop, front/dequeue in stacks, queues
- Simple sorting using priority queue (see pqdemo.cpp and usepq.cpp)

```cpp
string s; priority_queue pq;
while (cin >> s) pq.insert(s);
while (pq.size() > 0) {
  pq.deletemin(s);
  cout << s << endl;
}
```

Priority Queue implementations

- Implementing priority queues: average and worst case

<table>
<thead>
<tr>
<th>Insert O((\cdot))</th>
<th>Getmin O((\cdot))</th>
<th>DeleteMin O((\cdot))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked list (sorted?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanced tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quick look at class \(\text{tpq}\langle\ldots\rangle\)

- Templated class like tstack, tqueue, tvector, tmap, ...
 - If deletemin is supported, what properties must types put into tpq have, e.g., can we insert string? double? struct?
 - Can we change what minimal means (think about anaword and sorting)?
- If we use a compare function object for comparing entries we can make a min-heap act like a max-heap, see pqdemo.cpp
 - Notice that RevComp inherits from \(\text{Comparer}<\text{Kind}>\)
 - How is \(\text{Comparer}\) accessed?
- How is this as a sorting method, consider a vector of elements.
 - In practice heapsort uses the vector as the priority queue
 - From a big-\(\Omega\) perspective no difference: \(O(n \ \log \ n)\)
 - Is there a difference? What’s hidden with \(O\) notation?
Priority Queue implementation

- The class in tpq.h uses heaps, very fast and reasonably simple
 - Why not use inheritance hierarchy as was used with tmap?
 - Trade-offs when using HMap and BSTMap:
 - Time, space
 - Ordering properties

- Mechanism for changing comparisons used for priority
 - Different from comparison used in sortall functions (anaword)
 - Functions are different from classes when templates used
 - Functions instantiated when called, object/class instantiated when object constructed
 - The tpq mechanism uses inheritance, sorting doesn’t
 - In theory we could have template function in non-templated class, but g++ doesn’t support template member functions

Creating Heaps

- Heap is an array-based implementation of a binary tree used for implementing priority queues, supports:
 - insert, findmin, deletemin: complexities?

- Using array minimizes storage (no explicit pointers), faster too --- children are located by index/position in array

- Heap is a binary tree with shape property, heap/value property
 - shape: tree filled at all levels (except perhaps last) and filled left-to-right (complete binary tree)
 - each node has value smaller than both children

Array-based heap

- store “node values” in array beginning at index 1
- for node with index k
 - left child: index 2*k
 - right child: index 2*k+1

 why is this conducive for maintaining heap shape?
 - what about heap property?
 - is the heap a search tree?
 - where is minimal node?
 - where are nodes added? deleted?

Adding values to heap

- to maintain heap shape, must add new value in left-to-right order of last level
 - could violate heap property
 - move value “up” if too small

 change places with parent if heap property violated
 - stop when parent is smaller
 - stop when root is reached

 pull parent down, swapping isn’t necessary (optimization)
Adding values, details

```cpp
void pqueue::insert(int elt) {
    // add elt to heap in myList
    myList.push_back(elt);
    int loc = myList.size();
    while (1 < loc && elt < myList[loc/2]) {
        myList[loc] = myList[loc/2];
        loc /= 2;  // go to parent
    }
    // what's true here?
    myList[loc] = elt;
}
```

Removing minimal element

- Where is minimal element?
 - If we remove it, what changes, shape/property?
- How can we maintain shape?
 - “last” element moves to root
 - What property is violated?
- After moving last element, subtrees of root are heaps, why?
 - Move root down (pull child up) does it matter where?
- When can we stop “re-heaping”?
 -
 -

Trie: efficient search of words/suffixes

- A trie (from retrieval, but pronounced “try”) supports
 - These operations are $O(\text{size of string})$ regardless of how many strings are stored in the trie!
 - Insert/Delete string
 - Lookup string or string prefix

- In some ways a trie is like a 128 (or 26 or alphabet-size) tree, one branch/edge for each character/letter
 - Node stores branches to other nodes
 - Node stores whether it ends the string from root to it

- Extremely useful in DNA/string processing
 - Monkeys and typewriter simulation: similar to statistical methods used in Natural Language understanding

Trie picture and code (see trie.cpp)

- To add string
 - Start at root, for each char create node as needed, go down tree, mark last node
- To find string
 - Start at root, follow links
 - If Null/0 not contained
 - Check word flag in node
- To print all nodes
 - Visit every node, build string as nodes traversed
- What about union and intersection?
 - Indicates word ends here
Text Compression

- Input: String S
- Output: String S'
 - Shorter
 - S can be reconstructed from S'

Huffman Coding

- D.A Huffman in early 1950's
- Before compressing data, analyze the input stream
- Represent data using variable length codes
- Variable length codes though Prefix codes
 - Each letter is assigned a codeword
 - Codeword is for a given letter is produced by traversing the Huffman tree
 - Property: No codeword produced is the prefix of another
 - Letters appearing frequently have short codewords, while those that appear rarely have longer ones

Huffman Tree 2

- "A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS"
 - E.g. "A SIMPLE" ⇔ “101011010010010100111001100000"
Building a tree

- Initial case: Every character is a leaf/tree with the respective character counts → “the forest” of n trees
 n is the size of your alphabet

- Base case: there is only tree in the forest

- Reduction: Take the two trees with the smallest counts and combine them into a tree with count is equal to the sum of the two subtrees’ counts → n-1 trees in our forest

Encoding

1. Count occurrence of various characters in string O()
2. Build priority queue O()
3. Build Huffman tree O()
4. Write Huffman tree and coded data to file O()

Properties of Huffman coding

- Want to minimize weighted path length \(L(T) \) of tree T
 \[L(T) = \sum_{i \in \text{Leaf}(T)} d_i w_i \]
 \(w_i \) is the weight or count of each codeword \(i \)
 \(d_i \) is the leaf corresponding to codeword \(i \)
- Huffman coding creates pretty full bushy trees?
 - When would it produce a “bad” tree?
- How do we produce coded compressed data from input efficiently?
Writing code out to file

- How do we go from characters to codewords?
 - Build a table as we build our tree
 - Keep links to leaf nodes and trace up the tree
- Need way of writing bits out to file
 - Platform dependent?
 - UNIX read and write
- See bitops.h
 - obstream and ibstream
 - Write bits from ints
- How can differentiate between compressed files and random data from some file?
 - Store a number

Decoding a message

Decoding

1. Read in tree data \(O() \)
2. Decode bit string with tree \(O() \)

Other methods

- Adaptive Huffman coding
- Lempel-Ziv algorithms
 - Build the coding table on the fly while reading document
 - Coding table changes dynamically
 - Cool protocol between encoder and decoder so that everyone is always using the right coding scheme
 - Works darn well (compress, gzip, etc.)
- More complicated methods
 - Burrows-Wheeler (bunzip2)
 - PPM statistical methods
Questions

- How about ternary Huffman trees?
 - How would that affect the algorithm?
 - How about n-ary trees?
 - What would we gain?
- Are Huffman trees optimal?
 - What does that mean? (Hint: \(L(T) \))
 - How can that be proven? (Hint: Induction will be your friend again)

Sorting: From Theory to Practice

- Why do we study sorting?
 - Because we have to
 - Because sorting is beautiful
 - Because ... and ...

- There are \(n \) sorting algorithms, how many should we study?
 - \(O(n) \), \(O(\log n) \), ...
 - Why do we study more than one algorithm?
 - Which sorting algorithm is best?

Sorting out sorts (see also sortall.cpp)

- Simple, \(O(n^2) \) sorts --- for sorting \(n \) elements
 - Selection sort --- \(n^2 \) comparisons, \(n \) swaps, easy to code
 - Insertion sort --- \(n^2 \) comparisons, \(n^2 \) moves, stable, fast
 - Bubble sort --- \(n^2 \) everything, slow, slower, and ugly

- Divide and conquer faster sorts: \(O(n \log n) \) for \(n \) elements
 - Quick sort: fast in practice, \(O(n^2) \) worst case
 - Merge sort: good worst case, great for linked lists, uses extra storage for vectors/arrays

- Other sorts:
 - Heap sort, basically priority queue sorting
 - Radix sort: doesn’t compare keys, uses digits/characters
 - Shell sort: quasi-insertion, fast in practice, non-recursive

Selection sort

- Simple to code \(n^2 \) sort: \(n^2 \) comparisons, \(n \) swaps

```cpp
void selectSort(tvector<string>& a)
{   int k;
    for(k=0; k < a.size(); k++)
        {int minIndex = findMin(a,k,a.size());
            swap(a[k],a[minIndex]);
        }
}
```

- # comparisons: \(\sum_{k=1}^{n} k = 1 + 2 + ... + n = n(n+1)/2 = O(n^2) \)
- Swaps?
- Invariant: Sorted, won’t move final position
Insertion Sort

- Stable sort, $O(n^2)$, good on nearly sorted vectors
 - Stable sorts maintain order of equal keys
 - Good for sorting on two criteria: name, then age

```c
void insertSort(tvector<string>& a)
{
    int k, loc; string elt;
    for(k=1; k < a.size(); k++)
    {
        elt = a[k];
        loc = k; // shift until spot for elt is found
        while (0 < loc && elt < a[loc-1])
        {
            a[loc] = a[loc-1]; // shift right
            loc=loc-1;
        }
        a[loc] = elt;
    }
}
```

Summary of simple sorts

- Selection sort has n swaps, good for “heavy” data
 - Moving objects with lots of state, e.g., ...
 - A string isn’t heavy, why? (pointer and pointee)
 - What happens in Java?
 - Wrap heavy items in “smart pointer proxy”

- Insertion sort is good on nearly sorted data, it’s stable, it’s fast
 - Also foundation for Shell sort, very fast non-recursive
 - More complicated to code, but relatively simple, and fast

- Bubble sort is a travesty
 - Can be parallelized, but on one machine don’t go near it

Bubble sort

- For completeness you should know about this sort
 - Few (if any) redeeming features. Really slow, really, really
 - Can code to recognize already sorted vector (see insertion)
 - Not worth it for bubble sort, much slower than insertion

```c
void bubbleSort(tvector<string>& a)
{
    int j,k;
    for(j=a.size()-1; j >= 0; j--){
        for(k=0; k < j; k++)
        {
            if (a[k] > a[k+1])
                { swap(a[k],a[k+1]); }
        }
    }
}
```

Quicksort: fast in practice

- Invented in 1962 by C.A.R. Hoare, didn’t understand recursion
 - Worst case is $O(n^2)$, but avoidable in nearly all cases
 - In 1997 Introsort published (Musser, introspective sort)
 - Like quicksort in practice, but recognizes when it will be bad and changes to heapsort

```c
void quick(tvector<string>& a, int left, int right)
{
    if (left < right){
        int pivot = partition(a,left,right);
        quick(a,left,pivot-1);quick(a,pivot+1, right);
    }
}
```

- Recurrence? $X = \begin{cases} <= X \quad \text{Sorted, in final position} \\ > X \quad \text{ } \end{cases}$
Partition code for quicksort

```
int partition(tvector<string>& a, int left, int right)
{
    string pivot = a[left];
    int k, pIndex = left;
    for (k = left + 1; k <= right; k++)
        if (a[k] <= pivot)
            pIndex++;
    swap(a[k], a[pIndex]);
}
```

Analysis of Quicksort

- Average case and worst case analysis
 - Recurrence for worst case: \(T(n) = \)
 - What about average?

- Reason informally:
 - Two calls vector size \(n/2\)
 - Four calls vector size \(n/4\)
 - ... How many calls? Work done on each call?

- Partition: typically find middle of left, middle, right, swap, go
 - Avoid bad performance on nearly sorted data

- In practice: remove some (all?) recursion, avoid lots of “clones”

Tail recursion elimination

- If the last statement is a recursive call, recursion can be replaced with iteration
 - Call cannot be part of an expression
 - Some compilers do this automatically

```
void foo(int n)
{
    if (0 < n)
    {
        cout << n << endl;
        foo(n-1);
    }
}
```

Merge sort: worst case \(O(n \log n)\)

- Divide and conquer — recursive sort
 - Divide list/vector into two halves
 - Sort each half
 - Merge sorted halves together
 - What is complexity of merging two sorted lists?
 - What is recurrence relation for merge sort as described?
 - \(T(n) = \)

- What is advantage of vector over linked-list for merge sort?
 - What about merging, advantage of linked list?
 - Vector requires auxiliary storage (or very fancy coding)
Merge sort: lists or vectors

- Mergesort for vectors

```cpp
void mergesort(tvector<string>& a, int left, int right)
{
    if (left < right)
    {
        int mid = (right+left)/2;
        mergesort(a, left, mid);
        mergesort(a, mid+1, right);
        merge(a, left, mid, right);
    }
}
```

- What’s different when linked lists used?
 ➤ Do differences affect complexity? Why?

- How does merge work?

Mergesort continued

- Vector code for merge isn’t pretty, but it’s not hard
 ➤ Mergesort itself is elegant

```cpp
void merge(tvector<string>& a, int left, int middle, int right)
// pre:  left <= middle <= right,
//       a[left] <= … <= a[middle],
//       a[middle+1] <= … <= a[right]
// post: a[left] <= … <= a[right]
```

- Why is this prototype potentially simpler for linked lists?
 ➤ What will prototype be? What is complexity?

Summary of $O(n \log n)$ sorts

- Quicksort is relatively straight-forward to code, very fast
 ➤ Worst case is very unlikely, but possible, therefore ...
 ➤ But, if lots of elements are equal, performance will be bad
 • One million integers from range 0 to 10,000
 • How can we change partition to handle this?

- Merge sort is stable, it’s fast, good for linked lists, harder to code?
 ➤ Worst case performance is $O(n \log n)$, compare quicksort
 ➤ Extra storage for array/vector

- Heapsort, more complex to code, good worst case, not stable
 ➤ Basically heap-based priority queue in a vector

Sorting in practice

- Rarely will you need to roll your own sort, but when you do ...
 ➤ What are key issues?

- If you use a library sort, you need to understand the interface
 ➤ In C++ we have STL and sortall.cpp in Tapestry
 • STL has sort, and stable_sort
 • Tapestry has lots of sorts, Quicksort is fast in practice
 ➤ In C the generic sort is complex to use because arrays are ugly
 • See csort.cpp
 ➤ In Java guarantees and worst-case are important
 • Why won’t quicksort be used?

- Function objects permit sorting criteria to change simply
In practice: templated sort functions

- Function templates permit us to write once, use several times for several different types of vector
 - Template function “stamps out” real function
 - Maintenance is saved, code still large (why?)

- What properties must hold for vector elements?
 - Comparable using < operator
 - Elements can be assigned to each other

- Template functions capture property requirements in code
 - Part of generic programming
 - Some languages support this better than others (not Java)

Function object concept

- To encapsulate comparison (like operator <) in a parameter
 - Need convention for parameter: name and behavior
 - Enforceable by templates or by inheritance (or both)
 - Sorts don’t use inheritance, tpqueue<..> does

- Name convention: class/object has a method named compare
 - Two parameters, the (vector) elements being compared
 - See comparer.h, used in sortall.h and in tpq.h

- Behavior convention: compare returns an int
 - zero if elements equal
 - +1 (positive) if first > second
 - -1 (negative) if first < second

Function object example

class StrLenComp // : public Comparer<string>
{
 public:
 int compare(const string& a, const string& b) const
 // post: return -1/+1/0 as a.length() < b.length()
 {
 if (a.length() < b.length()) return -1;
 if (a.length() > b.length()) return 1;
 return 0;
 }
};

// to use this:
StrLenComp scomp;
if (scomp.compare(“hello”, ”goodbye”) < 0) …
 - We can use this to sort, see sortall.h
 - Call of sort: InsertSort(vec, vec.size(), scomp);

Non-comparison-based sorts

- lower bound: \(\Omega(n \log n)\) for comparison based sorts (like searching lower bound)
- bucket sort/radix sort are not-comparison based, faster asymptotically and in practice

sort a vector of ints, all ints in the range 1..100, how?

radix: examine each digit of numbers being sorted
Shell sort

- **Comparison-based, similar to insertion sort**
 - Using Hibbard’s increments (see sortall.h) yields $O(n^{3/2})$
 - Sequence of insertion sorts, note last value of h

```c
int k, loc, h; string elt;
int n = a.size(); // set h to 2^p-1, just less than n
while (h > 0)
{
    for (k = h; k < n; k++)
    {
        elt = a[k];
        loc = k;
        while (h <= loc && elt < a[loc-h])
        {
            a[loc] = a[loc-h];
            loc -= h;
        }
        a[loc] = elt;
    }
    h /= 2;
}
```