Computer Science and Programming

- Computer Science is more than programming
 - The discipline is called informatics in many countries
 - Elements of both science and engineering
 - Scientists build to learn, engineers learn to build
 - Elements of mathematics, physics, cognitive science, music, art, and many other fields
- Computer Science is a young discipline
 - Fiftieth anniversary in 1997, but closer to forty years of research and development
 - First graduate program at CMU (then Carnegie Tech) in 1965
- To some programming is an art, to others a science, to others an engineering discipline

What is Computer Science?

What is it that distinguishes it from the separate subjects with which it is related? What is the linking thread which gathers these disparate branches into a single discipline? My answer to these questions is simple — *it is the art of programming a computer*. It is the art of designing efficient and elegant methods of getting a computer to solve problems, theoretical or practical, small or large, simple or complex.

C.A.R. (Tony) Hoare

Computer Science

- Artificial Intelligence thinking machines
- Scientific Computing weather, cars, heart, modelling
- Theoretical CS analyze algorithms, models
- Computational Geometry theory of animation, 3-D models
- Architecture hardware-software interface
- Software Engineering engineering, science
- Operating Systems the soul of the machine
- Graphics from Windows to Hollywood
- Many other subdisciplines
Stories

- Who is Shawn Fanning and what did he do (19 years old)?
- Who is Marc Andreessen and what did he do (21 years old)?
- Who is Claude Shannon and what did he do (21 years old)?
- Who is Linus Torvalds and what did he do (21 years old)?
- Who is Dmitry Sklyarov and what did he do (26 years old)?
- Who is Tim Berners-Lee and what did he do (35 years old)?
- Who is Kary Mullis and what did he do (39 years old)?

Algorithms as Cornerstone of CS

- Step-by-step process that solves a problem
 - more precise than a recipe
 - eventually stops with an answer
 - general process rather than specific to a computer or to a programming language
- Searching: for phone number of G. Samsa, whose number is 929-9338, or for the person whose number is 489-6569
 - Are these searches different?
- If the phone book has 8 million numbers in it (why are there only 7.9 million phone numbers with area code 212?)
 - How many queries to find phone number of G. Samsa?
 - How many queries to find person with number 929-9338
 - What about IP addresses?

Search, Efficiency, Complexity

- Think of a number between 1 and 1,000
 - respond high, low, correct, how many guesses needed?
- Look up a word in a dictionary
 - Finding the page/word, how many words do you look at?
- Looking up a phone number in the Manhattan, NY directory
 - How many names are examined?
- How many times can 1,024 be cut in half?
 - $2^{10} = 1,024$, $2^{20} = 1,048,576$

Sorting Experiment: why do we sort?

- Groups of four people are given a bag containing strips of paper
 - on each piece of paper is an 8-15 letter English word
 - create a sorted list of all the words in the bag
 - there are 100 words in a bag
- What issues arise in developing an algorithm for this sort?
- Can you write a description of an algorithm for others to follow?
- Do you need a 1-800 support line for your algorithm?
- Are you confident your algorithm works?
Themes and Concepts of CS

- **Theory**
 - properties of algorithms, how fast, how much memory
 - average case, worst case: sorting cards, words, exams
 - provable properties, in a mathematical sense
- **Language**
 - programming languages: C++, Java, C, Perl, Fortran, Lisp, Scheme, Visual BASIC, ...
 - Assembly language, machine language,
 - Natural language such as English
- **Architecture**
 - Main memory, cache memory, disk, USB, SCSI, ...
 - pipeline, multi-processor

We can prove that in the worst case quicksort is bad
- doesn't matter what machine it’s executed on
- doesn’t matter what language it’s coded in
- unlikely in practice, but worst case always possible

Solutions? Develop an algorithm as fast as quicksort in the average case, but has good worst case performance
- quicksort invented in 1960
- introsort (for introspective sort) invented in 1996

Sometimes live with worst case being bad
- bad for sorting isn’t bad for other algorithms, needs to be quantified using notation studied as part of the theory of algorithms

Abstraction, Complexity, Models

- **What is an integer?**
 - In mathematics we can define integers easily, infinite set of numbers and operations on the numbers (e.g., +, -, *, /)
 - {... -3, -2, -1, 0, 1, 2, 3, ...}
 - In programming, finite memory of computer imposes a limit on the magnitude of integers.
 - Possible to program with effectively infinite integers (as large as computation and memory permit) at the expense of efficiency
 - At some point addition is implemented with hardware, but that’s not a concern to those writing software (or is it?)
 - C++ doesn’t require specific size for integers, Java does
- **Floating-point numbers have an IEEE standard, it’s more expensive to do arithmetic with 3.14159 than with 2**

Alan Turing (1912--1954)

- Instrumental in breaking codes during WW II
- Developed mathematical model of a computer called a Turing Machine (before computers)
 - solves same problems as a Pentium III (more slowly)
- **Church-Turing thesis**
 - All “computers” can solve the same problems
- Showed there are problems that cannot be solved by a computer
- Both a hero and a scientist/mathematician, but lived in an era hard for gay people
Complexity: What’s hard, what’s easy?

- What is a prime number?
 - 2, 3, 5, 7, 11, 13, ...
 - Largest prime?
 - 48112983708204869
 - 671998030559713968361666935767
- How do we determine if these numbers are prime?
 - Test 3, 5, 7, ...
 - If we can test one million numbers a second, how long to check a 100 digit #?
- Why do we care?
 - Finding factors is “hard”, determining primality is “easy”
 - What does this mean?
 - Why do we care?
 - Encryption depends on this relationship, without encryption and secure web transactions where would we be?

Why do we care?

- Encryption depends on this relationship, without encryption and secure web transactions where would we be?

C.A.R. (Tony) Hoare (b. 1934)

- Won Turing award in 1980
- Invented quicksort, but didn’t see how simple it was to program recursively
- Developed mechanism and theory for concurrent processing
- In Turing Award speech used “Emporer’s New Clothes” as metaphor for current fads in programming

“Beginning students don’t know how to do top-down design because they don’t know which end is up”

Solving Problems

- Cook Hamburgers or Pancakes. Five minutes per side. We're given a pan that holds three, we need to cook five. How long does it take?
 - Assumptions?
 - Pansize = 4, Pancakes = 7?
 - Pansize = 303, Pancakes = 919?
- Can you write a formula that solves the problem? Can you write a program that solves the problem?
 - Parameterized, specified, realized, neatly fried

Creating a Program

- Specify the problem
 - remove ambiguities
 - identify constraints
- Develop algorithms, design classes, design software architecture
- Implement program
 - revisit design
 - test, code, debug
- Documentation, testing, maintenance of program
- From ideas to electrons

A Computer Science Tapestry
From High- to Low-level languages

- C++ is a multi-purpose language, we'll use it largely as an object-oriented language, but not exclusively
 - Contrast, for example, with Java in which everything is a class
 - Contrast with Fortran in which nothing is a class
- Compilers translate C++ to a machine-specific executable program
 - The compiler is a program, input is C++, output is an executable
 - What language is the compiler written in?
 - In theory C++ source code works on any machine given a compiler for the machine
- C++ and other programming language are more syntactically rigid than English and other natural languages

Ripped from (real) Headlines

- Police Squad Helps Dog Bite Victim
- Milk Drinkers Turn to Powder
- Kids Make Nutritious Snacks
- Red Tape Holds Up New Bridge
- Teacher Strikes Idle Kids
- Tuna Biting Off Coast of Washington
- Local High School Dropouts Cut in Half
- Old School Pillars are Replaced by Alumni

Levels of Programming Language

- Machine specific assembly language, Sparc on left, Pentium on right, both generated from the same C++

```
main:
save $esp,-128,$esp
mov 7,$k0
at $k0,$(fp-20)
mov 12,$k0
at $k0,$(fp-24)
ld $(fp-20),$k0
ld $(fp-24),$k1
call .umul,0
nop
at $k0,$(fp-28)
mov 0,$i10
b .L1
nop
```

```
main:
pushl $ebp
movl $esp,$ebp
subl $12,$esp
movl $7,-4(%ebp)
novl $12,-8(%ebp)
novl -4(%ebp),$eax
imull -8(%ebp),$eax
novl $eax,-12(%ebp)
novl $eax,$eax
jmp .L1
.align 4
```

Alternatives to compilation

- Some languages are interpreted, Scheme and Java are examples
 - like simultaneous translation instead of translation of written document. The same word may be translated many times
 - The interpreter is a program that translates one part of a source code at a time
 - The interpreter is machine specific, written in some programming language
- JVM, the Java Virtual Machine
 - Like a PC or Mac but machine is virtual, written in software
 - Executes Java byte codes which are created from Java source
 - Like assembly language: between source code and executable
 - JVM must be written for each architecture, e.g., Linux, Windows, Mac, BeOS, ...

(borrowed from Rich Pattis, pattis@cs.cmu.edu)
What is digital?

- What’s the difference between Vinyl LP and CD/DVD?
- Rolex and Timex?
- Sampling analog music for CD’s
 - 44,100 samples/channel/second * 2 channels * 2 bytes/sample * 74 minutes * 60 seconds/minute = 783 million bytes
- How does MP3 help?

What is a computer?

- Turing machine: invented by Alan Turing in 1936 as a theoretical model
- Mainframe, PC, laptop, supercomputer

Chips, Central Processing Unit (CPU)

- CPU chips
 - Pentium (top)
 - G3/4 (bottom)
 - Sound, video, …
- Moore’s Law
 - chip “size” (# transistors) doubles every 12–18 months (formulated in 1965)
 - 2,300 transistors Intel 4004, 42 million Pentium Ø

Why is programming fun?

What delights may its practitioner expect as a reward?

- First is the sheer joy of making things
- Second is the pleasure of making things that are useful
- Third is the fascination of fashioning complex puzzle-like objects of interlocking moving parts
- Fourth is the joy of always learning
- Finally, there is the delight of working in such a tractable medium. The programmer, like the poet, works only slightly removed from pure thought-stuff.