1. Logic

Prove (uniqueness of complement law) for a Boolean Algebra.

A Boolean Algebra is a set B containing special elements 1 and 0 together with binary operators $+$ and \cdot and a unary operator $'$ which satisfy the following axioms for all $x, y, z \in B$.

- (commutative laws) $\quad x \cdot y = y \cdot x$
 $\quad x + y = y + x$
- (associative laws) $\quad x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 $\quad x + (y + z) = (x + y) + z$
- (distributive laws) $\quad x \cdot (y + z) = x \cdot y + x \cdot z$
 $\quad x + (y \cdot z) = (x + y) \cdot (x + z)$
- (identity laws) $\quad x \cdot 1 = x$
 $\quad x + 0 = x$
- (complement laws) $\quad x + x' = 1$
 $\quad x \cdot x' = 0$

The special elements 0 and 1 is usually called called zero and unity, respectively. x' is the complement of x. Often $x \cdot y$ is written as $x \cdot y$. Given these axioms we can derive (prove) the following “rules” of Boolean arithmetic.

Theorem BA: For elements 0, 1, x and y of a Boolean algebra:

- (complement of identities) $\quad 0' = 1$
 $\quad 1' = 0$
- (involution law) $\quad (x')' = x$
- (uniqueness of complement law) \quad if $\quad x + x' = 1$ and $x \cdot x' = 0$
 then $x' = x^*$
idempotent laws) \[x + x = x \]
\[x \cdot x = x \]

(null laws) \[x + 1 = 1 \]
\[x \cdot 0 = 0 \]

(absorption laws) \[x + (x \cdot y) = x \]
\[x \cdot (x + y) = x \]

(De Morgan’s Laws) \[(x + y)' = x' \cdot y' \]
\[(x \cdot y)' = x' + y' \]

Why is this theorem different from ThmB? ThmB started with a definition for +, \cdot and \,' and then stated all the properties that are part of the definition of a Boolean algebra and ThmBA. Here we start with the definition of an algebraic system and state that the other properties follow. In fact, we will see soon that, if \(B = \{0, 1\} \), then the defining rules for +, \cdot and \,' must be those of section 2.

2. Linear Algebra

[2.1] Prove ThmR following the hints.

Theorem R. For any \(m \times n \) matrix \(A \), there exist \(m \times m \) and \(n \times n \) permutation matrices \(P \) and \(Q \), an \(m \times m \) matrix \(L \) and an \(m \times n \) matrix \(U \), and an integer \(0 \leq r \leq \min(m, n) \) such that

\[
\text{(FCT)} \quad PAQ = LU.
\]

For \(p = m-r \) and \(q = n-r \), \(L \) is \(m \times m \) unit lower triangular and of the form

\[
\text{(ULT)} \quad L = \begin{bmatrix}
L_r & 0_p \\
0_pr & I_p
\end{bmatrix},
\]

where \(L_r \) \(r \times r \); and \(U \) is \(m \times n \) taking the form

\[
\text{(U)} \quad U = \begin{bmatrix}
U_r & U_q \\
0_pr & 0_{pq}
\end{bmatrix}
\]

where \(U_r \) is \(r \times r \) upper triangular with nonzero diagonal entries and \(U_{rq} \) is an \(r \times q \) matrix. Possibly \(r, p, \) or \(q \) can be zero; in this case any submatrix with one of these indices is empty (does not exist).
First some comments, then some hints on the proof. First note that if \(A = 0 \) (the trivial case), \(A = I_m0_{m \times n} \), and the theorem holds. The integer \(r \) is called the rank of the matrix \(A \). It is not hard to prove from this theorem that \(r \) is both the maximum number of independent rows and columns of \(A \). Furthermore if \(A \) has \(r = \min(m,n) \), \(r \) is said to have full rank. In this case, either \(p = 0 \) or \(q = 0 \).

Proof. Use induction on \(k = \min(m,n) \). When \(k = 1 \), the matrix \(A \) is a single row or column. The \(A = 0 \) case is handled as above. If \(A 0 \neq 0 \), pick \(P \) and \(Q \) to move a nonzero into the \((1,1)\) position and check that the factorization (FCT) holds. Assuming the case \(k = j \), extend the factorization to the case \(k = j +1 \) similar to the proof of Theorem LU.

Endproof.

[2.2]. Apply ThmR to analyze the solution to the system \(Ax = b \) when \(A \) is \(m \times n \) and \(b \) is a column \(n \)-vector. Is there always a solution? Is there a solution for some \(b \)? What about \(b = 0 \) (homogeneous case)?

3. **Trees**

Do either exercise2 or exercise3 in the tree chapter3 (it is logically correct to do both (correctly)).

4. **Graphs**

Prove Thm5 below using the hints.

Theorem 5. A graph \(G = (X,E) \) is a k-tree if and only if

(i) \(G \) is connected;
(ii) \(G \) has a k-clique but no \(k + 2 \) clique;
(iii) every minimal \(x,y \) separator is a k-clique.

Proof.

Here are some hints.

Use induction on \(n = |X| \). First show the conditions are necessary. The cases \(|X| = k \) and \(|X| = k + 1 \) are fairly straightforward. Assume the case \(n \) and show the case \(n + 1 \) by picking off a vertex \(x \) such that \(\text{adj}(x) \) is a k-clique and considering \(G(X-x) \). You can use Prop3 to help show that (iii) holds in \(G \); be careful to consider both cases that \(x \) is in \(S \) or not in \(S \), the candidate separator in \(G \).

Now show the conditions are sufficient. To show that \(G \) is a k-tree, use induction on \(n \); determine the base case, and assume the cases \(m \leq n \). For the case \(n + 1 \), show that there is some vertex \(x \) such that \(\text{adj}(x) \) is a k-clique and that \(G(X-x) \) is a k-tree. Let \(S \) be some minimal \(x,y \) separator. Show, using Prop3, that the conditions hold in the leaf \(L_x \); hence
L_{x} is a k-tree. Now use Prop2 to get the existence of two separate vertices which adjacency sets are k-cliques. Not both can be in S; let z be the one not in S. Show that \text{adj}(z) is a k-clique in G and that G(X-z) is a k-tree again because the conditions hold in G(X-z).

Endproof.

5. Graphs and Matrices

Complete [5.1] –[5.6].

Let D = (X, E) with n, n', m and m' defined as in the graph case. The major difference here is that we will be over the field \(\mathbb{R} \), rather than \(\mathbb{F}_2 \) so \(1 \neq -1 \). Our matrices will have as entries numbers from the set \{ -1, 0, 1 \}. Another difference is that xy and yx can both be (directed) edges in E. An oriented cycle (or-cycle), c, is a cycle in the undirected graph G(D) or a cycle of the form [x, y, x], and an oriented cut-set (or-cut-set), k, is a cut-set of G(D) and includes both xy and yx if they are in E and xy is in the cut-set of G. We will drop the adjective “oriented” if the context is clear. The orientation is arbitrary; a direction is specified by taking a directed edge from c or k, and the remaining edges are consistent or opposed to the orientation. When making a cycle or cut-set vector, v, v has one orientation and \(-v\) has the opposite orientation.

A spanning tree, T, of D is a spanning tree of G(D), but, if xy is a branch and yx is in F, then yx is a chord. As before branches give rise to f-cuts and chords give rise to f-cycles; the orientation of these f-cuts and f-cycles is taken from the orientation of the branches and chords.

[5.1] Define the matrices \(K_T \) and \(C_T \) in analogy with the graph case. Use \(-1\) when the f-cycle edges or f-cut edges are opposed to the branch and chord orientation. Show that \(K_T = [I_n, K] \) and \(C_T = [C, I_m] \); the \(-1\) entries are only in K and C. Derive \(K_T \) and \(C_T \) for the digraph of Fig1c (find a spanning tree first). Show that the rows of both \(K_T \) and \(C_T \) are independent.

[5.2] Prove that \(Z = C_T(K_T)^T = 0 \) still holds. State (and prove) a Theorem analogous to Thm1.

[5.3] State (and prove) a Theorem analogous to Thm2.

[5.4] State (and prove) a Theorem analogous to Thm3 and the analogue of Cor1.

[5.5] Prove that the rows in \(M = \begin{bmatrix} I & K \\ C & I \end{bmatrix} \) are independent (hence the situation in Example2 does not happen). Start by making the graph of Fig2 into a digraph and work through the details on this example. Hint: if \(Mx = 0 \) for some nonzero \(x = [a; b] \) partitioned as in M, then \(x^T Mx = 0 \). Is this possible for nonzero \(x \)?
[5.6] Define A_0 and A in the digraph case and state and prove a Theorem analogous to Thm4. Make Example 3 into a digraph and find A_0 and A analogous to the graph case.

6. Extra Credit: Discrete Probability

Prove the second inequality of (LLN5) below. Some hints are given in chapt6.

We will now consider in some detail how close the random variable, S_n, is to np for large n (large numbers). To be precise, we will consider the probability of the event $E(n, \varepsilon) = \{| S_n/n - p | < \varepsilon \}$ and show that for any (small) ε

(LLN4) $p(E(n, \varepsilon)) \to 1$ as $n \to \infty$.

To do this we must consider the binomial distribution in some detail.

We will prove (LLN4) by showing that

(LLN5) $p\{S_n \geq n(p + \varepsilon)\} \to 0$ and $p\{S_n \leq n(p - \varepsilon)\} \to 0$ as $n \to \infty$.