1. **NP-Completeness Problem 1:**

Let \(G = (V, E) \) be a directed graph and \(s, t \) be two vertices of \(G \). A hamiltonian path is a simple path from \(s \) to \(t \) that contains each vertex \(v \in V \) exactly once. Define

\[
HAMPATH = \{ (G, s, t) \mid G \text{ has a hamiltonian path from } s \text{ to } t \}
\]

Similarly, let \(G' = (V', E') \) be an undirected graph and \(s', t' \) be two vertices of \(G' \). A hamiltonian path is a simple path from \(s' \) to \(t' \) that contains each vertex \(v' \in V' \) exactly once. Define

\[
UHAMPATH = \{ (G', s', t') \mid G' \text{ has a hamiltonian path from } s' \text{ to } t' \}
\]

Assuming \(HAMPATH \in \text{NPC} \), prove that \(UHAMPATH \in \text{NPC} \).

2. **NP-Completeness Problems 2:**

Given an undirected graph \(G \), let

\[
SPATH = \{ (G, a, b, k) \mid G \text{ contains a simple path from } a \text{ to } b \text{ of length at most } k \}
\]

\[
LPATH = \{ (G, a, b, k) \mid G \text{ contains a simple path from } a \text{ to } b \text{ of length at least } k \}
\]

(a) Prove that \(SPATH \in \text{P} \).

(b) Prove that \(LPATH \in \text{NPC} \).

3. **NP-Completeness Problems 3:**

Consider the 2-SAT problem which is defined as:

\[
2\text{-SAT} = \{ \varphi \in \text{SAT} \mid \varphi \text{ is 2-CNF} \}
\]

(a) Is \(2\text{-SAT} \in \text{NP} \)? Prove your conclusion.

(b) Is \(2\text{-SAT} \in \text{P} \)? Prove your conclusion.

4. **Approximation Algorithms Problem 1:**

Let \(G = (V, E) \) be a weighted complete graph with \(n \) vertices. The travelling-salesman problem is to find the hamiltonian cycle of \(G \) with minimum cost. This problem is \text{NP-hard}.

Consider the following closest-point heuristic for building an approximate travelling-salesman tour. Begin with a trivial cycle consisting of a single arbitrarily chosen vertex. At each step, identify the vertex \(u \) that is not on the cycle but whose distance to any vertex on the cycle is minimum. Suppose that the vertex on the cycle that is nearest to \(u \) is vertex \(v \). Extend the cycle to include \(u \) by inserting \(u \) just after \(v \). Repeat until all vertices are on the cycle. Prove that this heuristic returns a tour whose total cost is not more than twice the cost of an optimal tour.
5. **Approximation Algorithms Problem 2:**

 Give an efficient greedy algorithm that finds an optimal vertex cover for a tree in linear time.