Short Answers for Homework-2

The time cost is $O(\log n)$.

Notice if $A[n] < a$, then we can’t find the item. If $A[n] \geq a$, but for i that satisfies and $2^i < n$ and $2^i + 1 \geq n$, we have $A[2^i] < a$, then do binary search between $A[2^i]$ and $A[n]$.

3. (b) If $\mu \rightarrow \text{pre} < \nu \rightarrow \text{pre}$, this means μ is a proper ancestor of ν, or μ and ν share a common ancestor η, μ is in the left subtree of η and ν is in the right subtree of η.

If $\mu \rightarrow \text{post} > \nu \rightarrow \text{post}$, this means μ is a proper ancestor of ν, or μ and ν share a common ancestor η, μ is in the right subtree of η and ν is in the left subtree of η.

If both conditions are satisfied, that means μ is a proper ancestor of ν.

4. When a node is inserted into a red-black tree, the incoming edge is always red. Then we do rotations and promotions to keep the property of the red-black tree. However, all operation for insertion will keep at least one red edge in the tree.

5. When ENQUEUEing an element, put it into stack A. When DEQUEUEing an element, first check stack B. If stack B is empty, pop all the elements in stack A into stack B and pop the top of stack B. If stack B is not empty, pop the top of stack B.

Define the potential function Φ as $\Phi = 2 \times \text{size of stack } A + \text{size of stack } B = 2S_A + S_B$.

ENQUEUE:
Actual cost: $a_i = 1$
Amortized cost:

$$c_i = a_i + \Phi_i - \Phi_{i-1}$$

$$= 1 + (2(S_A + 1) + S_B) - (2S_A + S_B)$$

$$= 3$$

DEQUEUE:

1. When stack B is empty:
 Actual cost: $a_i = S_A + 1$
Amortized cost:
\[
c_i = a_i + \Phi_i - \Phi_{i-1} \\
= (S_A + 1) + (2 \times 0 + (S_A - 1)) - (2S_A + 0) \\
= 0
\]

2. When stack \(B \) is not empty:
 - Actual cost: \(a_i = 1 \)
 - Amortized cost:
 \[
c_i = a_i + \Phi_i - \Phi_{i-1} \\
 = 1 + (2S_A + (S_B - 1)) - (2S_A + S_B) \\
 = 0
\]

So each \texttt{ENQUEUE} and \texttt{DEQUEUE} is \(O(1) \) amortized time.

6. \textbf{Bonus Problem:}

 Use one list \(A \) to store the element and another list \(B \) to store the minimum. Each element in \(A \) also has a pointer pointing to the corresponding element in \(B \) (if exists).

 \textbf{ENQUEUE:} Add the element \(a \) to the end of list \(A \). Compare this element \(a \) to the end of list \(B \), which is the element \(b \). If \(a > b \), add \(a \) directly to the end of list \(B \). If \(a < b \), remove \(b \) (the end of list \(B \)), and compare \(a \) to the new end of list \(B \). Keep doing this until the end of list \(B \) is smaller than \(a \), and put \(a \) at the end of list \(B \).

 \textbf{DEQUEUE:} Remove the head of list \(A \), and if there is a corresponding element in \(B \), remove it, too.

 \textbf{MINIMUM:} Return the head of list \(B \).

 Define the potential function \(\Phi \) as \(\Phi = \) length of stack \(A \) + length of stack \(B = L_A + L_B \).

 \textbf{ENQUEUE:} Suppose we remove \(k \) element from list \(B \)
 - Actual cost: \(a_i = 2 + k \)
 - Amortized cost:
 \[
c_i = a_i + \Phi_i - \Phi_{i-1} \\
 = (2 + k) + ((L_A + 1) + (L_B - k + 1)) - (L_A + L_B) \\
 = 4
\]

 \textbf{DEQUEUE:}

 1. When dequeuing the minimum:
 - Actual cost: \(a_i = 2 \)
 - Amortized cost:
 \[
c_i = a_i + \Phi_i - \Phi_{i-1} \\
 = 2 + ((L_A - 1) + (L_B - 1)) - (L_A + L_B) \\
 = 0
\]
1. When dequeuing the minimum:

 Actual cost: $a_i = 1$

 Amortized cost:

 $$c_i = a_i + \Phi_i - \Phi_{i-1}$$
 $$= 1 + ((L_A - 1) + L_B) - (L_A + L_B)$$
 $$= 0$$

Minimum:

 Actual cost: $a_i = 1$

 Amortized cost:

 $$c_i = a_i + \Phi_i - \Phi_{i-1}$$
 $$= 1 + (L_A + L_B) - (L_A + L_B)$$
 $$= 1$$

So all three operation are $O(1)$ amortized time.