1. First check if T and T' are of the same length. Then use the algorithm in the note to determine if T' is a substring of TT.

2. (a) Scan the string y from b_1 to b_n. Find the first a_1 appears in y. From this position, find the first a_2 appears in y. Until we reach the end of string y or find a_m in y.
 This algorithm scan each character in y only once. So its running time is $O(n)$.
 (b) First you should prove that if we fix the starting point of x in y, then the algorithm in problem (a) will find the shortest substring.
 In this case you can find the shortest substring by starting the algorithm from different locations and compare the length of the found substrings.

3. (This one is easy.)

4. Let the alphabet $\Sigma = \{a_1, a_2, \ldots, a_n\}$, then
 (a) $\bar{a} = (a_1|a_2|\cdots|a_n)$
 (b) $\bar{a}_i = (a_1|a_2|\cdots|a_{i-1}|a_{i+1}|\cdots|a_n)$

5. (a) $(0|1)^*0101(0|1)^*$
 (b) $(0|1)(0|1)^*0(0|1)^*$
 (c) $(00^*100^*)(1000^*)(000^*1)(000^*)$
 (d) $((1^*01^*01^*)^*)((0^*10^*10^*)^*)$