Measuring performance of algorithms

- How fast is fast enough?

```cpp
bool search(const tvector<string> & a,
            const string & key)
// pre:  a contains a.size() entries
// post: return true if and only if key found in a
{
    int k; int len = a.size();
    for(k=0; k < len; k++)
        if (a[k] == key) return true;
    return false;
}
```

- In “early years”, time this function on vectors of different sizes, compute a measure for a specific machine/architecture

- In current times: how fast on P300, P500, G4, ultrasparc?
 - Does compiler make a difference? Other factors?
Empirical and Theoretical results

- **We run the program to time it (e.g., using CTimer)**
 - What do we use as data? Why does this matter?
 - What do we do about the kind of machine being used?
 - What about the load on the machine?

- **Use mathematical/theoretical reasoning:**
 - The algorithm takes time linear in the size of the vector
 - Double size of vector means double the time
 - What about searching twice, is this still linear?

- **We use big-Oh, a mathematical notation for describing a class of functions**
What is big-Oh about?

- A family of functions that are “the same in the limit”
 - For polynomials, use only leading term, ignore coefficients

\[
y = x^2 \quad y = x^2 - 6x + 9 \quad y = 3x^2 + 4x
\]

- What do these look like when graphed? What about quotient of one divided by the other, in the limit?

- Running time for input of size \(N\) is \(10N\) or \(2N\) or \(N + 1\)
 - Running time is \(O(N)\), call this linear
 - Big-Oh hides/obscures some empirical analysis, but is good for general description of algorithm
<table>
<thead>
<tr>
<th>(N)</th>
<th>(O(\log N))</th>
<th>(O(N))</th>
<th>(O(N \log N))</th>
<th>(O(N^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000003</td>
<td>0.00001</td>
<td>0.000033</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>0.000007</td>
<td>0.00010</td>
<td>0.000664</td>
<td>0.1000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000010</td>
<td>0.00100</td>
<td>0.010000</td>
<td>1.0</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000013</td>
<td>0.01000</td>
<td>0.132900</td>
<td>1.7 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000017</td>
<td>0.10000</td>
<td>1.661000</td>
<td>2.78 hr</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000020</td>
<td>1.0</td>
<td>19.9</td>
<td>11.6 days</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000030</td>
<td>16.7 min</td>
<td>18.3 hr</td>
<td>318 centuries</td>
</tr>
</tbody>
</table>
Determining complexity with big-Oh

- runtime, space complexity refers to mathematical notation for algorithm (not really to code, but ok)
- typical examples:

```c
int sum = 0;
for(k=0; k < n; k++)        for(k=0; k < n; k++)
{                           {
    if (a[k] == key) sum++;     min = k;
}                             for(j=k+1; j < n; j++)
return sum;                      if (a[j] < a[min]) min = j;
                                    Swap(a[min],a[k]);
}
```

- what are complexities of these?
Recurrences

● **Counting nodes**

```c
int length(Node * list)
{
    if (0 == list) return 0;
    else return 1 + length(list->next);
}
```

● *What is complexity? justification?*

● *T(n) = time to compute length for an n-node list*

\[
T(n) = T(n-1) + 1 \\
T(0) = 1
\]

● *instead of 1, use O(1) for constant time*

 ➤ *independent of n, the measure of problem size*
Solving recurrence relations

- **plug, simplify, reduce, guess, verify?**

 \[T(n) = T(n-1) + 1 \]
 \[T(0) = 1 \]

 \[T(n) = [T(n-2) + 1] + 1 \]
 \[= [(T(n-3) + 1) + 1] + 1 \]
 \[= T(n-k) + k \] find the pattern!

- **get to base case, solve the recurrence**
Why we study recurrences/complexity?

- Tools to analyze algorithms
- Machine-independent measuring methods
- Familiarity with good data structures/algorithms

- What is CS person: programmer, scientist, engineer?
 scientists build to learn, engineers learn to build

- Mathematics is a notation that helps in thinking, discussion, programming
Complexity Practice

● What is complexity of \textit{Build}? (what does it do?)

\begin{verbatim}
Node * Build(int n)
{
 if (0 == n) return 0;
 else
 {
 Node * first = new Node(n, Build(n-1));
 for(int k = 0; k < n-1; k++)
 {
 first = new Node(n, first->next);
 }
 return first;
 }
}
\end{verbatim}

● Write an expression for $T(n)$ and for $T(0)$, solve.
Consider a modification to MultiSet

- Instead of using prev and next to point to a linear arrangement, use them to divide the universe in half
 - Similar to binary search, everything less goes left, everything greater goes right

- How do we search?
- How do we insert?

- How are lists and trees related?
How do we print all values in a tree?

- **When is root printed?**
 - After left subtree, before right subtree.

```cpp
void Visit(Node * t)
{
    if (t != 0)
    {
        Visit(t->prev);
        cout << t->info << endl;
        Visit(t->next);
    }
}
```

- **Inorder traversal**

Insertion and Find? Complexity?

- How do we search for a value in a tree, starting at root?
 ➤ Can do this both iteratively and recursively, contrast to printing which is very difficult to do iteratively
 ➤ How is insertion similar to search?

- What is complexity of print? Of insertion?
 ➤ Is there a worst case for trees?
 ➤ Do we use best case? Worst case? Average case?

- How do we define worst and average cases
 ➤ Compare to multiset README, what is worst case for different implementations?
 ➤ What are complexities of multiset implementations?
Binary Trees

- Linked lists have efficient insertion and deletion, but inefficient search
 - arrays: search is efficient, insertion and deletion are not
- Binary trees are structures that can be used to yield efficient insertion/deletion and search
 - trees used in many contexts, not just for searching, e.g., expression trees
 - insertion is as efficient as binary search in array, insertion/deletion as efficient as linked list (once node found)
 - binary trees are inherently recursive, difficult to process trees non-recursively, but possible (recursion never required, but often makes coding/algorithms simpler)
Binary trees (continued)

- **Binary tree is a structure:**
 - empty
 - root node with *left* and *right* subtrees
 - terminology: parent, children, leaf node, internal node, depth, height, path
 - link from node N to M then N is *parent* of M
 - M is *child* of N
 - *leaf* node has no children
 - internal node has 1 or 2 children
 - *path* is sequence of nodes, N_1, N_2, \ldots, N_k
 - N_i is parent of N_{i+1}
 - sometimes edge instead of node
 - *depth* (level) of node: length of root-to-node path
 - level of root is 1
 - *height* of node: length of longest node-to-leaf path
 - height of tree is height of root
Binary trees (continued)

- Trees can have many shapes: short/bushy, long/stringy
 - if height is h, number of nodes is between 2^{h-1} and $2^h - 1$
 - single node tree: height = 1, if height = 3

![Diagram of binary trees]

- C++ implementation, similar to doubly-linked list

```cpp
struct Tree {
    string info;
    Tree * left;
    Tree * right;
};
```
Tree functions

● Compute height of a tree, what is complexity?

```c
int height(Tree * root)
{
    if (root == 0) return 0;
    else
    {
        return 1 + max(height(root->left),
                        height(root->right));
    }
}
```

● Modify function to compute number of nodes in a tree, does complexity change?

➤ What about computing number of leaf nodes?
Tree traversals

- Different traversals useful in different contexts
 - Inorder prints search tree in order
 - Visit left-subtree, process root, visit right-subtree
 - Preorder useful for reading/writing trees
 - Process root, visit left-subtree, visit right-subtree
 - Postorder useful for destroying trees
 - Visit left-subtree, visit right-subtree, process root

Diagram:
```
  "llama"
 /       \
"giraffe" "tiger"
  \
  "elephant" "jaguar" "monkey"
```
Balanced Trees and Complexity

- A tree is height-balanced if
 - Left and right subtrees are height-balanced
 - Left and right heights differ by at most one

```c
bool isBalanced(Tree * root)
{
    if (root == 0) return true;
    else
    {
        return
            isBalanced(root->left) &&
            isBalanced(root->right) &&
            abs(height(root->left) - height(root->right)) <= 1;
    }
}
```
What is complexity?

- Assume trees are “balanced” in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis

- How to develop recurrence relation?
 - What is T(n)?
 - What other work is done?

- How to solve recurrence relation
 - Plug, expand, plug, expand, find pattern
 - A real proof requires induction to verify that pattern is correct
sidebar: solving recurrence

\[T(n) = 2T(n/2) + O(n) \]
\[T(1) = 1 \]

\[T(n) = 2\left[2T(n/4) + n/2\right] + n \]
\[= 4T(n/4) + n + n \]
\[= 4\left[2T(n/8) + n/4\right] + 2n \]
\[= 8T(n/8) + 3n \]
\[= \ldots \text{ eureka!} \]
\[= 2^k T(n/2^k) + kn \]

Let \(2^k = n \)

\[k = \log n, \text{ this yields } 2^{\log n} T(n/2^{\log n}) + n(\log n) \]
\[n T(1) + n(\log n) \]
\[O(n \log n) \]