Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

- Q is finite set of states
- Σ is tape (input) alphabet
- q₀ is initial state
- F ⊆ Q is set of final states.
- δ: Q × Σ → Q

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

![Transition Diagram](image)

M = (Q, Σ, δ, q₀, F) =

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₁</td>
<td>q₀</td>
</tr>
</tbody>
</table>

Example of a move: δ(q₀, 1) =
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q∈F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

Definition:

δ*(q, λ) = q

δ*(q, wa) = δ(δ*(q, w), a)

Definition The language accepted by a DFA M=(Q,Σ,δ,q0,F) is set of all strings on Σ accepted by M. Formally,

L(M)={w ∈ Σ* | δ*(q0, w) ∈ F}
Trap State

Example: \(L(M) = \{ b^n a \mid n > 0 \} \)

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Definition A language is regular iff there exists DFA \(M \) s.t. \(L = \operatorname{L}(M) \).
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA=(Q,\Sigma,\delta,q_0,F)

where

Q is finite set of states
\Sigma is tape (input) alphabet
q_0 is initial state
F \subseteq Q is set of final states.
\delta:Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q

Example

Note: In this example \delta(q_0, a)

Example

L=\{ (ab)^n \mid n > 0 \} \cup \{a^n b \mid n > 0 \}

Definition q_j \in \delta^*(q_i, w) if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

\delta^*(q_0, ab)=

\delta^*(q_0, aba)=

Definition: For an NFA M, L(M)={w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset}

The language accepted by nfa M is all strings w such that there exists a walk labeled w from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

![NFA Diagram]

Theorem Given an NFA $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

- $Q_D =$
- $F_D =$
- $\delta_D :$

Algorithm to construct M_D

1. start state is $\{q_0\}$
2. While can add an edge
 - (a) Choose a state $A = \{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 - (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 - (c) Add state B if it doesn’t exist
 - (d) add edge from A to B with label a
3. Identify final states
4. if $\lambda \in L(M_N)$ then make the start state final.
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR } \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: