Section: Pushdown Automata

Ch. 7 - Pushdown Automata

A DFA = (Q, ∑, δ, q₀, F)

input tape

| a | a | b | b | a | b |

tape head

head moves

current state

0 1
Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).
Definition: Nondeterministic PDA (NPDA) is defined by

\[M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \]

where
- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(\Gamma \) is stack alphabet
- \(q_0 \) is initial state
- \(z \) is start stack symbol (bottom of stack)
- \(F \subseteq Q \) is set of final states.

\(\delta : Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \text{finite subsets of } Q \times \Gamma^* \)
Example of transitions

\[\delta(q_1,a,b) = \{(q_3,b),(q_4,ab),(q_6,\lambda)\} \]

The diagram for the above transitions is:
Instantaneous Description:

\((q,w,u)\)

Description of a Move:

\((q_1,aw,bx) \vdash (q_2,w,yx)\)

iff

Definition Let \(M=\langle Q, \Sigma, \Gamma, \delta, q_0, z, F \rangle\) be a NPDA. \(L(M) = \{ w \in \Sigma^* \mid (q_0,w,z) \vdash^* (p,\lambda,u), p \in F, u \in \Gamma^* \}\). The NPDA accepts all strings that start in \(q_0\) and end in a final state.
Example: $L = \{a^n b^n | n \geq 0\}$, $\Sigma = \{a, b\}$, $\Gamma = \{z, a\}$
Another Definition for Language Acceptance

NPDA M accepts $L(M)$ by empty stack:

$$L(M) = \{ w \in \Sigma^* | (q_0, w, z)^* \vdash (p, \lambda, \lambda) \}$$
Example: \(L = \{ w w^R | w \in \Sigma^+ \} \), \(\Sigma = \{ a, b \} \),
\(\Gamma = \{ z, a, b \} \)
Example: \(L = \{ww \mid w \in \Sigma^*\} \), \(\Sigma = \{a, b\} \)
Examples for you to try on your own: (solutions are at the end of the handout).

- \(L=\{a^n b^m | m > n, m, n > 0 \}, \quad \Sigma = \{a, b\}, \quad \Gamma = \{z, a\} \)
- \(L=\{a^n b^{n+m} c^m | n, m > 0 \}, \quad \Sigma = \{a, b, c\} \)
- \(L=\{a^n b^{2n} | n > 0 \}, \quad \Sigma = \{a, b\} \)
Theorem Given NPDA M that accepts by final state, ∃ NPDA M’ that accepts by empty stack s.t. L(M) = L(M’).

- Proof (sketch)
 M = (Q, Σ, Γ, δ, q₀, z, F)
 Construct M’ = (Q’, Σ, Γ’, δ’, qₛ, z’, F’)

Theorem Given NPDA \(M \) that accepts by empty stack, \(\exists \) NPDA \(M' \) that accepts by final state.

- Proof: (sketch)

 \[M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \]

 Construct \(M' = (Q', \Sigma, \Gamma', \delta', q_s, z', F') \)
Theorem For any CFL L not containing λ, \exists an NPDA M s.t. $L=L(M)$.

- **Proof (sketch)**
 Given (λ-free) CFL L.
 $\Rightarrow \exists$ CFG G such that $L=L(G)$.
 $\Rightarrow \exists$ G' in GNF, s.t. $L(G)=L(G')$.
 $G'=(V,T,S,P)$. All productions in P are of the form:
Example: Let $G’=(V,T,S,P)$, $P=$

\[
S \rightarrow aSA \mid aAA \mid b \\
A \rightarrow bBBB \\
B \rightarrow b
\]
Theorem Given a NPDA M, \exists a NPDA M' s.t. all transitions have the form $\delta(q_i, a, A) = \{c_1, c_2, \ldots, c_n\}$ where

$$c_i = (q_j, \lambda)$$

or $c_i = (q_j, BC)$

Each move either increases or decreases stack contents by a single symbol.

- Proof (sketch)
Theorem If $L = L(M)$ for some NPDA M, then L is a CFL.

Proof: Given NPDA M.

First, construct an equivalent NPDA M that will be easier to work with. Construct M' such that

1. accepts if stack is empty
2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

$M' = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

Construct $G = (V, \Sigma, S, P)$ where

$V = \{ (q_icq_j) | q_i, q_j \in Q, c \in \Gamma \}$

Goal: (q_0zq_f) which will be the start symbol in the grammar.
Example:

L(M)=\{a a^* b\}, M=(Q, \Sigma, \Gamma, \delta, q_0, z, F),
Q=\{q_0, q_1, q_2, q_3\},
\Sigma=\{a, b\}, \Gamma=\{A, z\}, F=\{\}.

\text{Diagram:}

- Transition from q_0 to q_1 on input a, output \lambda.
- Transition from q_1 to q_2 on input \lambda, output z, \lambda.
- Transition from q_0 to q_3 on input a, output \lambda.
- Transition from q_3 to q_0 on input \lambda, output z, Az.
- Transition from q_0 to q_0 on input a, output A, z; Az.
Construct the grammar $G = (V, T, S, P)$,

$V = \{(q_0 Aq_0), (q_0 zq_0), (q_0 Aq_1), (q_0 zq_1), \ldots\}$

$T = \Sigma$

$S = (q_0 zq_2)$

$P =$
From transition 1 \((q_0Aq_1) \rightarrow b\)

From transition 2 \((q_1zq_2) \rightarrow \lambda\)

From transition 3 \((q_0Aq_3) \rightarrow a\)

From transition 4 \((q_0zq_0) \rightarrow a(q_0Aq_0)(q_0zq_0)\)
\[a(q_0Aq_1)(q_1zq_0)\]
\[a(q_0Aq_2)(q_2zq_0)\]
\[a(q_0Aq_3)(q_3zq_0)\]
\[(q_0zq_1) \rightarrow a(q_0Aq_0)(q_0zq_1)\]
\[a(q_0Aq_1)(q_1zq_1)\]
\[a(q_0Aq_2)(q_2zq_1)\]
\[a(q_0Aq_3)(q_3zq_1)\]
\[(q_0zq_2) \rightarrow a(q_0Aq_0)(q_0zq_2)\]
\[a(q_0Aq_1)(q_1zq_2)\]
\[a(q_0Aq_2)(q_2zq_2)\]
\[a(q_0Aq_3)(q_3zq_2)\]
\[(q_0zq_3) \rightarrow a(q_0Aq_0)(q_0zq_3)\]
\[a(q_0Aq_1)(q_1zq_3)\]
\[a(q_0Aq_2)(q_2zq_3)\]
\[a(q_0Aq_3)(q_3zq_3)\]
From transition 5 \((q_3 z q_0) \rightarrow (q_0 A q_0)(q_0 z q_0)\) |
\((q_0 A q_1)(q_1 z q_0)\) |
\((q_0 A q_2)(q_2 z q_0)\) |
\((q_0 A q_3)(q_3 z q_0)\) |
\((q_3 z q_1) \rightarrow (q_0 A q_0)(q_0 z q_1)\) |
\((q_0 A q_1)(q_1 z q_1)\) |
\((q_0 A q_2)(q_2 z q_1)\) |
\((q_0 A q_3)(q_3 z q_1)\) |
\((q_3 z q_2) \rightarrow (q_0 A q_0)(q_0 z q_2)\) |
\((q_0 A q_1)(q_1 z q_2)\) |
\((q_0 A q_2)(q_2 z q_2)\) |
\((q_0 A q_3)(q_3 z q_2)\) |
\((q_3 z q_3) \rightarrow (q_0 A q_0)(q_0 z q_3)\) |
\((q_0 A q_1)(q_1 z q_3)\) |
\((q_0 A q_2)(q_2 z q_3)\) |
\((q_0 A q_3)(q_3 z q_3)\)
Recognizing \text{aab} in M:

\[
(q_0, \text{aab}, z) \vdash (q_0, \text{aab}, Az) \\
\vdash (q_3, \text{ab}, z) \\
\vdash (q_0, \text{ab}, Az) \\
\vdash (q_3, \text{b}, z) \\
\vdash (q_0, \text{b}, Az) \\
\vdash (q_1, \lambda, z) \\
\vdash (q_2, \lambda, \lambda)
\]

Derivation of string \text{aab} in G:

\[
(q_0zq_2) \Rightarrow a(q_0Aq_3)(q_3zq_2) \\
\Rightarrow aa(q_3zq_2) \\
\Rightarrow aa(q_0Aq_3)(q_3zq_2) \\
\Rightarrow aaa(q_3zq_2) \\
\Rightarrow aaa(q_0Aq_1)(q_1zq_2) \\
\Rightarrow aaab(q_1zq_2) \\
\Rightarrow aaab
\]
Definition: A PDA
\(M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \) is deterministic if for every \(q \in Q, a \in \Sigma \cup \{\lambda\}, b \in \Gamma \)

1. \(\delta(q, a, b) \) contains at most 1 element
2. if \(\delta(q, \lambda, b) \neq \emptyset \) then \(\delta(q, c, b) = \emptyset \) for all \(c \in \Sigma \)

Definition: \(L \) is DCFL iff \(\exists \) DPDA \(M \) s.t. \(L = L(M) \).

Examples:

1. Previous pda for \(\{a^n b^n | n \geq 0\} \) is deterministic.
2. Previous pda for \(\{a^n b^m c^{n+m} | n, m > 0\} \) is deterministic.
3. Previous pda for \(\{ww^R | w \in \Sigma^+\}, \Sigma = \{a, b\} \) is nondeterministic.

Note: There are CFL’s that are not deterministic.
$L = \{a^n b^n | n \geq 1\} \cup \{a^n b^{2n} | n \geq 1\}$ is a CFL and not a DCFL.

- **Proof:**

 $L = \{a^n b^n : n \geq 1\} \cup \{a^n b^{2n} : n \geq 1\}$

 It is easy to construct a NPDA for $\{a^n b^n : n \geq 1\}$ and a NPDA for $\{a^n b^{2n} : n \geq 1\}$. These two can be joined together by a new start state and λ-transitions to create a NPDA for L. Thus, L is CFL.

 Now show L is not a DCFL.

 Assume that there is a deterministic PDA M such that $L = L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

 Construct a PDA M' as follows:

 1. Create two copies of M: M_1 and M_2. The same state in M_1 and M_2
are called cousins.

2. Remove accept status from accept states in M_1, remove initial status from initial state in M_2. In our new PDA, we will start in M_1 and accept in M_2.

3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both $a^n b^n$ and $a^n b^{2n}$. After reading n b’s, must accept if no more b’s and continue if there are more b’s.

4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

This is the construction of our new PDA.
When we read $a^n b^n$ and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of $a^n b^{2n}$. Only the b’s in M_2 have been replaced by c’s, so the new machine accepts $a^n b^n c^n$.

The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M) = L$. Q.E.D.
Example: \(L = \{ a^n b^m | m > n, m, n > 0 \} \), \(\Sigma = \{ a, b \} \), \(\Gamma = \{ z, a \} \)

Example: \(L = \{ a^n b^{n+m} c^m | n, m > 0 \} \), \(\Sigma = \{ a, b, c \} \),

Example: \(L = \{ a^n b^n c^2 | n > 0 \} \), \(\Sigma = \{ a, b \} \)