Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:

Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms
Definition of TM

- **Storage**
 - tape

- **Actions**
 - write symbol
 - read symbol
 - move left (L) or right (R)

- **Computation**
 - initial configuration
 - start state
 - tape head on leftmost tape square
 - input string followed by blanks
 - processing computation
 - move tape head left or right
 - read from and write to tape
 - computation halts
 - final state

Formal Definition of TM

A TM M is defined by \(M=(Q,\Sigma,\Gamma,\delta,q_0,B,F) \) where

- \(Q \) is finite set of states
- \(\Sigma \) is input alphabet
- \(\Gamma \) is tape alphabet
- \(B \in \Gamma \) is blank
- \(q_0 \) is start state
- \(F \) is set of final states
- \(\delta \) is transition function

\(\delta(q,a) = (p,b,R) \) means “if in state q with the tape head pointing to an ’a’, then move into state p, write a ’b’ on the tape and move to the right”.

TM as Language recognizer

Definition: Configuration is denoted by ⊢.

If \(\delta(q,a) = (p,b,R) \) then a move is denoted

\[
abaqabba \vdash ababpbba
\]
Definition: Let M be a TM, $M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)$. $L(M) = \{w \in \Sigma^*|q_0w \xrightarrow{*} x_1q_fx_2 \text{ for some } q_f \in F, \ x_1, x_2 \in \Gamma^* \}$

TM as language acceptor

M is a TM, w is in Σ^*,

- if $w \in L(M)$ then M halts in final state
- if $w \not\in L(M)$ then either
 - M halts in non-final state
 - M doesn’t halt

Example

$\Sigma = \{a, b\}$

Replace every second 'a' by a 'b' if string is even length.

- Algorithm
Example:

$L = \{a^n b^n c^n | n \geq 1 \}$

Is the following TM correct?

```
L = a; 1, R
2; 2, R
a; a, R
2; 2, R
b; 2, R
b; b, R
3; 3, R
b; b, R
c; 3, L
3; 3, L
a; a, L
b; b, L
2; 2, L
3; 3, L
```

TM as a transducer

TM can implement a function: $f(w) = w'$

Definition: A function with domain D is *Turing-computable* or *computable* if there exists TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ such that

$$q_0 w \xrightarrow{*} q_f f(w)$$

$q_f \in F$, for all $w \in D$.

Example:

$f(x) = 2x$

x is a unary number

```
start with: 111
↑
end with: 111111
↑
```
Is the following TM correct?

Example:

\[L = \{ww | w \in \Sigma^+ \}, \Sigma = \{a, b\} \]