Big Oh Again Again

- Have taken the attitude that mostly you can look things up
- Now need to be able to do your own derivations
- Extend our menu of solutions to common recurrences
- Let's look at previously shown table

Recognizing Common Recurrences

- Below are some algorithms and recurrence relation encountered
 - Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - $T(n)$ is the time for quicksort to run on an n-element vector

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Recurrence Relation</th>
<th>Big Oh</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary search</td>
<td>$T(n) = T(n/2) + O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>sequential search</td>
<td>$T(n) = T(n-1) + O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>tree traversal</td>
<td>$T(n) = 2T(n/2) + O(1)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>quicksort</td>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>selection sort</td>
<td>$T(n) = T(n-1) + O(n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

- Remember the algorithm, re-derive complexity

Big Oh for Quickselect

- Quickselect finds the Nth Smallest item in a list
 - For example
 - $\{ 13, 14, 11, 17, 15, 19, 12, 16, 18, 17 \}$
 - 4^{th} smallest is 14. Program partially sorts so that it ends up in the 4^{th} index position (3).
 - Code on next slide
 - Has much in common with Quicksort
 - What are the difference?

- Recurrence Relation
 - $T(0) = 1$
 - $T(N) = T(N/2) + N$

Quickselect

- Partially reorders list so that index smallest is in proper position

  ```java
  void quickselect(String[] list, int first, int last, int kIndex){
    int k, lastIndex = first;
    String pivot = list[first];
    for(k = first+1; k <= last; k++){
      if (list[k].compareTo(pivot) <= 0){
        lastIndex++;
        swap(list, lastIndex, k);
      }
    }
    swap(list, lastIndex, first);
    if (lastIndex == kIndex) return;
    if (kindex < lastIndex)
      quickselect(list, first, lastIndex-1, kindex);
    else
      quickselect(list, lastIndex+1, last, kindex);
  }
  ```

- What is Big Oh?
Solving Quickselect Big Oh

- Plug, simplify, reduce, guess, verify?

\[T(n) = T(n/2) + n \]

\[T(1) = 1 \]

\[T(n/2) = T(n/2/2) + n/2 \]

\[T(n) = [T(n/4) + n/2] + n = T(n/4) + 3n/2 \]

\[T(n/4) = T(n/4/2) + n/4 \]

\[T(n) = [(T(n/8) + n/4) + n/2] + n = T(n/8) + 7n/4 \]

Now, let \(k = \log n \), then \(T(n) = T(0) + 2n = 1 + 2n \)

- Get to base case, solve the recurrence: \(O(n) \)

Helpful formulae

- We always mean base 2 unless otherwise stated

- What is \(\log(1024) \)?

\[\log(x) \cdot \log(y) \]

\[y \cdot \log(x) \]

\[n \log(2) = n \]

\[2^{(\log n)} = n \]

- Sums (also, use sigma notation when possible)

\[1 + 2 + 4 + 8 + ... + 2^k = 2^{k+1} - 1 = \sum_{i=0}^{k} 2^i \]

\[1 + 2 + 3 + ... + n = n(n+1)/2 = \sum_{i=1}^{n} i \]

\[a + ar + ar^2 + ... + ar^{n-1} = a(r^n - 1)/(r-1) = \sum_{i=0}^{n-1} ar^i \]

Towers of Hanoi

// Initial state for n=3
//
// A B C
// (___) 1 | |
// (_) 2 | |
// (___) 3 | |

Sample output responding to hanoi("A", "C", "B", 3);

> Move disk 1 from A to C
> Move disk 2 from A to B
> Move disk 1 from C to B
> Move disk 3 from A to C
> Move disk 1 from B to A
> Move disk 2 from B to C
> Move disk 1 from A to C

Towers of Hanoi code

```java
void hanoi(String from, String to, String via, int n)
// Pre: n > 0 disks in pile "from" to be moved to pile "to"
// with pile "via" available for intermediate storage. All
// piles so that disk n always above disk n+k where k > 0.
// Post: Messages generated to show how to move disks to pile "to"
// with intermediate use of all piles but only one disk moved at
// a time and at all times for all n, disk n above disk n+k where
// k > 0. (I.e., at no time is a larger disk above a smaller disk
// where smaller disks have smaller numbers than larger disks.){
if (n == 1) // base case: only one disk in pile
    System.out.println("Move disk 1 from " + from + " to " + to + ");
else {
    hanoi(from, via, to, n-1); // move disks above to alternate
    System.out.println("Move disk " + n + " from " + from + " to " + to + ");
    hanoi(via, to, from, n-1); // move disk above to target
}
```
Solving Towers of Hanoi Big Oh

- **Recurrence relation:**

 \[T(n) = 2T(n-1) + 1 \]

 \[T(0) = 1 \]

 \[T(n-1) = 2T(n-1-1) + 1 \]

 \[T(n) = 2(2T(n-2) + 1) + 1 = 4T(n-2) + 3 \]

 \[T(n-2) = T(n-2-1) + 1 \]

 \[T(n) = 2(2(2T(n-3) + 1) + 1) + 1 = 8T(n-3) + 7 \]

 \[T(n) = 2^kT(n-k) + 2^k - 1 \]

 find the pattern!

 Now, let \(k=n \), then \(T(n) = 2^nT(0) + 2^n - 1 = 2^{n+1} - 1 \)

- **Get to base case, solve the recurrence:** \(O(2^n) \)

- **Oh – Oh!**

Eugene (Gene) Myers

- Lead computer scientist/software engineer at Celera Genomics (now at Berkeley)

- "What really astounds me is the architecture of life. The system is extremely complex. It's like it was designed." ... "There's a huge intelligence there."