Data Streams

Everything Data
CompSci 216 Spring 2015
Announcements (Wed. Apr. 8)

• **Homework #12** to be posted by tomorrow

• **Project mid-term feedback** to be emailed by this weekend

• **T-shirt design contest**: see email for details
Data stream

• A **potentially infinite sequence**, where data arrives one record at a time
• We only get **one look**—can’t go back
• We want to answer a **standing query** that produces new/updated results as stream goes by
• We have **limited space** to remember whatever we deem necessary to answer the query
Several questions about streams

How do we maintain a random sample of size n for all data we’ve seen so far?
 – Sample can be used to answer queries

How do we maintain a data structure to check if a new arrival has appeared before?
 – E.g., a URL shortening service

How do we count the number of unique records seen so far?
 – E.g., # of unique visitors (by IP) to a website
Sampling static data vs. stream

• With a static dataset
 – We know the total data size N
 – We can access an arbitrary record

• With a stream
 – There is no N, just the number of records we have previously seen
 – We only get one look of any record, in arrival order
Reservoir sampling

• Make one pass over data
• Maintain a reservoir of n records
• After reading t records, the reservoir is a random sample of the first t records

• The algorithm tells us how to update the reservoir upon every new record arrival
Simple algorithm

• Initialize reservoir to the first n records
• For the t-th (new) record
 – Pick a random number x between 1 and t
 – If $x \leq n$, then replace the x-th record in the reservoir with the new record

• That’s it!
But why?

• If \(t = n \), obviously the reservoir has a "random sample" of all records seen so far

• Suppose the reservoir is a random sample of the first \(t \) records for \(t = k - 1 \)
 – I.e., \(P[r \text{ in reservoir after } k - 1 \text{ steps}] = n/(k - 1) \)

• What happens when \(t = k \)?
 – The new record is included with prob. \(n/k \)
 – For any other record \(r \), \(P[r \text{ in reservoir}] = P[r \text{ in reservoir after } k - 1 \text{ steps}] \times P[r \text{ is not replaced in step } k] \)
 = \([n/(k - 1)] \times (1 - 1/k) = n/k \)
An improvement

What if skipping new records is cheaper than accessing them one by one?

After adding the t-th record to reservoir...

• Simulate forward until we need to add a new record in the reservoir; skip until then

• Or calculate the CDF of skip size

\[P[\text{skip size} \leq s] = 1 - \left(\frac{t+1-n}{t+1} \right) \left(\frac{t+2-n}{t+2} \right) \cdots \left(\frac{t+s+1-n}{t+s+1} \right) \]

 – Sample from this CDF, skip accordingly
 – Pick one record in reservoir to replace
Summary of reservoir sampling

• Helps create a “running” random sample of fixed size over a stream

• Very useful when computing/accessing the whole dataset is expensive
Outline

How do we maintain a random sample of size \(n \) for all data we’ve seen so far?
 – Sample can be used to answer queries

How do we maintain a data structure to check if a new arrival has appeared before?
 – E.g., a URL shortening service

How do we count the number of unique records seen so far?
 – E.g., # of unique visitors (by IP) to a website
Problem boils down to...

• Give a large set S (e.g., all values seen so far), check whether a given value x is in S

• Suppose we have n bits of storage ($n \ll |S|$)
 – Cannot afford to store S
Approximation comes to rescue

- If x is in S, return *true* with prob. 1
 - I.e., no false negatives

- If x is not in S, return *false* with high prob.
 - I.e., possible false positives
Primitive: hash function

\[h: S \rightarrow \{1, 2, \ldots, n\} \]

- Hashes values uniformly to integers in \([1, n]\), i.e.: \(P[h(x) = i] = 1/n \)

• “Compressing” a value down with one \(h \) loses too much information, so we use \(k \) independent hash functions \(h_1, h_2, \ldots, h_k \)
Bloom filter

Initialization
• Set all n bits to 0
Add x to S
• Compute $h_1(x), h_2(x), \ldots, h_k(x)$
• Set the corresponding k bits to 1
Check if x is in S
• Compute $h_1(x), h_2(x), \ldots, h_k(x)$
• Return true iff the corresp. k bits are all 1
No false negatives

If x is really in S

• Then by construction we have set bits $h_1(x), h_2(x), \ldots, h_k(x)$ to 1

• So check will surely return true
False positive probability

If x is not in S

- Check returns *true* if each bit $h_j(x)$ is 1 due to some other value(s) in S
- $P[\text{bit } i \text{ is 1}]$
 - $= 1 - P[\text{bit } i \text{ was not set by } k|S| \text{ hashes}]$
 - $= 1 - (1 - 1/n)^{k|S|}$
- $P[k \text{ particular bits are 1}]$
 - $= (1 - (1 - 1/n)^{k|S|})^k$
 - $\approx (1 - e^{-k|S|/n})^k$
Example

- Suppose there are $|S| = 10^9$ elements
- Suppose we have 1 GB (8×10^9 bits) memory

If $k = 1$
- $P[\text{false positive}] \approx (1 - e^{-k|S|/n})^k = 1 - e^{-1/8} \approx 0.1175$

If $k = 2$
- $P[\text{false positive}] \approx (1 - e^{-k|S|/n})^k = (1 - e^{-2/8})^2 \approx 0.0493$
Example

- Suppose there are $|S| = 10^9$ elements
- Suppose we have 1 GB (8×10^9 bits) memory

As we increase the # of bits to set to 1 per element, it is more likely that a bunch of bits become 1 just by chance.
Summary of Bloom filter

• Helps check membership in a large set that cannot be stored entirely

• No false negatives
 – Good for applications like URL shortener

• False negative probability can be tweaked by the choice of n and k
Outline

How do we maintain a random sample of size n for all data we’ve seen so far?
 – Sample can be used to answer queries

How do we maintain a data structure to check if a new arrival has appeared before?
 – E.g., a URL shortening service

How do we count the number of unique records seen so far?
 – E.g., # of unique visitors (by IP) to a website
Can you use a Bloom filter?

- Increment a counter whenever check returns false for an incoming value.
- Because of 0 false negative and non-0 false positive probabilities, we will consistently underestimate the # of distinct values.
- Also, the Bloom filter does more than we need—can we use the n bits more efficiently?
FM (Flajolet-Martin) sketch

Let $\text{Tail}_0(h(x)) = \#$ of trailing consecutive 0’s

- $\text{Tail}_0(101001) = 0$
- $\text{Tail}_0(101010) = 1$
- $\text{Tail}_0(001100) = 2$
- $\text{Tail}_0(101000) = 3$
- $\text{Tail}_0(000000) = 6$
FM sketch

• Maintain a value K (max 0-tail length)
• Initialize K to 0
• For each new value
 – Compute $\text{Tail}_0(h(x))$
 – Replace K with this value if it is greater than K
• $F' = 2^K$ is an estimate of F, the true number of distinct elements

• K require very little space to store
Rough intuition

If we have F distinct elements, we’d expect

- $F/2$ of them to have $\text{Tail}_0(x) = 0$
- $F/4$ of them to have $\text{Tail}_0(x) = 1$
- ...
- $F/2^i$ of them to have $\text{Tail}_0(x) = i$
- ...

So $F’ = 2^K$ is pretty good guess of F
How good is the result?

• F: the true number of distinct elements
• F': guess by FM sketch
• We can show that for all $c > 3$, $P[F/c \leq F' \leq cF] > 1 - 3/c$

• But that’s not very accurate!
Use more sketches!

• Use the “median of means” trick
• Maintain $a \times b$ FM sketches
 – Use independent hash functions!
• Compute the mean over each group of a
• Return the median of b means as answer
Summary of FM sketch

• Helps estimate # of distinct elements in a large set that cannot be stored entirely
• Each FM sketch is very rough, but groups of them improve estimation
• Trick question: do FM sketches support membership check like Bloom filter?
 – No—too much error on any particular check
 – Specialization gives us better efficiency
Summary

Tricks for big data covered in class

• Parallel processing (e.g., MapReduce)
• Approximate processing
 – Sampling (downsize data)
 – Stream processing (linear time, limited space)

Image: http://bigdatapix.tumblr.com/