Goal: Develop a virtual computing infrastructure for autonomic resource management across federated clusters that is adaptive, on demand, and reliable

Motivation

- Efficient and adaptive coordinated resource management between federated clusters
- Encourage contribution of resources for sustainability
- Easy access to distributed resources (e.g., for virtual computing with controlled sharing)
- Virtualization technology (e.g., Xen, VMware) offers useful "knobs"
 - Migration and suspend/checkpoint
 - Performance isolation - slice resizing
- Rich policy space for fine-grained adaptation to changing demands and conditions

Federating Clusters

- Challenge: Balance the need for sites to retain control of their resources with the need for application environments (services) to span multiple sites
- Approach: Separate resource placement (where) from provisioning (what and when)
 - Provider sites delegate provisioning power to brokers
 - Brokers aggregate resources from multiple sites and arbitrate between requests
 - Pluggable resource management policies
- No central global authority

Virtual Machine Migration

- Need for virtual machine migration at sites
 - Reconcile provisioning and placement policies
 - Resolve failures and allow for system maintenance
 - Thermal or energy resource management [USENIX05, ICAC06, SYSL06, ISCA06]
- Challenge: Need policies for migration planning
- Approach: Live migration with configurable resource suspend-resume to break potential deadlock

Shirako

- Toolkit for generic brokered utility service architectures
- Contracts in the form of leases for resource control
 - Resources (e.g., VM slices) granted for fixed time period
 - Renewable leases and adaptive resource allocation
- Generic leasing core for system extensibility [USENIX06]
- SHARP [SOSP03] framework defines roles for self-interested, accountable actors:
 - Service Manager - requests and maintains leases
 - Provider Site - controls resource placement and enforces guest isolation
 - Broker - map requests to resources
- Fine-grained allocation with partitionable resources
 - Memory, CPU, network bandwidth
- Enables autonomic resource management, and continuous adaptation

Example Systems

- Grid Hosting [Supercomputing06]
 - Host grids within "containers" - all software and resources required for a virtual organization
 - Each grid runs a coordinator (GROC) to procure resources from provider sites in response to changing load

- Virtual batch computing
 - Assign each job to a custom, virtualized container
 - Broker acts as "job scheduler"
 - Learn job runtime predictions based on given resources over time (NIMO [VLDB06])

- Plush [Jeannie Albrecht et. al]
 - Deploys, manages, and maintains distributed applications on allocated resources
 - Allows combined use of resources from PlanetLab and Shirako