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ABSTRACT 
Emerging technologies present opportunities for system designers 
to meet the challenges presented by competing trends of big data 
analytics and limitations on CMOS scaling.  Specifically, 
memristors are an emerging high-density technology where the 
individual memristors can be used as storage or to perform 
computation. The voltage applied across a memristor determines 
its behavior (storage vs. compute), which enables a configurable 
memristor substrate that can embed computation with storage. 

This paper explores accelerating point and range search queries 
as instances of the more general configurable combined compute 
and storage capabilities of memristor arrays.  We first present 
MemCAM, a configurable memristor-based content addressable 
memory for the cases when fast, infrequent searches over large 
datasets are required.  For frequent searches, memristor lifetime 
becomes a concern.  To increase memristor array lifetime we 
introduce hybrid data structures that combine trees with 
MemCAM using conventional CMOS processor/cache hierarchies 
for the upper levels of the tree and configurable memristor 
technologies for lower levels.   

We use SPICE to analyze energy consumption and access time of 
memristors and use analytic models to evaluate the performance 
of configurable hybrid data structures.  The results show that with 
acceptable energy consumption our configurable hybrid data 
structures improve performance of search intensive applications 
and achieve lifetime in years or decades under continuous queries.  
Furthermore, the configurability of memristor arrays and the 
proposed data structures provide opportunities to tune the trade-
off between performance and lifetime and the data structures can 
be easily adapted to future memristors or other technologies with 
improved endurance. 

Categories and Subject Descriptors1 
B.3.2 [Hardware]: Design Styles – associative memories. C.1 
[Computer Systems Organization]: Procesor Architectures – 
multiple data stream architectures, heterogeneous (hybrid) 
systems. E.1 [Data] – trees. 

General Terms 
Algorithms, Design, Performance, Reliability. 

Keywords 
Emerging technology, specialization, memory systems. 

1.   INTRODUCTION 
Workload and technology trends are significant driving forces 
behind computer systems design. Three significant current trends 
are large data sets, limits of CMOS power dissipation, and 
emerging technologies.  First, the desire to query and analyze an 

                                                                    
1  Yang Liu is currently with Oracle, this work was performed 

while at Duke University. 

increasingly large amount of data presents significant algorithm 
and systems challenges, e.g., [2, 6].  Second, the power 
dissipation limits of current CMOS packaging create an 
architectural trend toward the design of application accelerators 
that provide customized hardware for improving the performance 
of common workload scenarios [5, 12, 13, 34].  Third, scaling 
limits of CMOS motivate the need for alternative technologies to 
augment or supplant CMOS [3].  The confluence of these three 
trends presents an opportunity to explore new approaches that 
span traditional system abstraction boundaries from technology up 
through applications. 

This paper explores memristors⎯an emerging high-density 
technology⎯where the individual memristors can be used either 
for non-volatile storage or to perform computation [8, 9, 18, 19, 
29, 32, 35]. The voltage applied across a memristor determines its 
behavior (storage vs. compute), which enables configurable use of 
the memristor substrate to embed computation with storage. We 
propose using memristor arrays as a single combined 
compute/storage substrate that can be dynamically configured to 
provide customized computational support for big-data and other 
applications.  In this paper, we focus on two types of search 
operations (point and range queries) as specific instances of the 
more general specialized accelerators.  Search is an integral part 
of many applications including databases, machine learning, 
network routing, DNA sequencing; and recent research has 
explored methods for exploiting other new technologies for 
improving search [15] or database algorithms [7]. 

Memristors have the potential to provide higher capacity 
(1012/cm2) [32] than CMOS with  switching times as low as 1ns 
an external array access times  as low as 10ns [22, 29].  The 
memristive computation we explore is implication logic [4], 
which makes it possible to perform computation within the 
storage structure.  Unfortunately, memristors have much lower 
endurance (1010 write cycles [36]) than CMOS devices (1016 write 
cycles for SRAM [11]) and in-storage computing further 
exacerbates the problem since each implication logic operation 
could be a memristor write.  The challenge is to exploit the 
density and combined compute/storage aspect of memristors 
while maintaining acceptable lifetimes. 

To meet the above challenges we first propose MemCAM, a 
configurable memristor-based content addressable memory 
(CAM).  A search is performed by applying the same sequence of 
implication logic operations to each MemCAM cell in parallel.  
MemCAM can be used for either point or range queries by simply 
changing the allocation of memristors used for compute vs. 
storage and using a slightly different sequence of implication 
logic operations to perform greater than/less than comparisons 
instead of only equality.  MemCAM is best suited for low query 
rates since its lifetime is only a few minutes under continuous 
queries.  Standard wear leveling techniques are inadequate for 
MemCAM since all cells are accessed each query. 
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To provide long lifetime under high query rates, we introduce 
configurable hybrid data structures that use both conventional 
CMOS processors/cache hierarchies and memristors for 
compute/storage.  Our new data structures combine T-trees, B+-
trees, and MemCAM to obtain a balance between search time and 
lifetime by exploiting a heterogeneous computing environment.  
The upper levels of the trees, accessed frequently, are 
implemented in software using conventional processors and 
caching methods and serve to distribute requests over the less 
frequently accessed remaining data⎯a technique we call 
algorithmic wear leveling.  The memristor array and an associated 
programmable controller implements lower level tree traversal 
and/or MemCAM operations.  These new data structures can be 
reconfigured to trade between performance and lifetime for a 
specific usage scenario and to adapt to future memristors with 
improved endurance.  
The qualitative design space of memristor-based storage 
structures is shown in Figure 1. The lifetime of a memristor-based 
memory is the longest due to low write frequency and can be 
further improved by standard wear-leveling techniques.  However, 
the search time of a memristor-based memory is the longest, and 
increases as data size increases.  MemCAM has the shortest 
search time because all data items can be searched simultaneously 
but also has the shortest lifetime due to high write frequency. 
Wear leveling techniques cannot improve the lifetime of 
MemCAM because writes are already uniform. As long as 
endurance is limited for memristors, hybrid data structures are 
better choices because writes are distributed and occur less 
frequently per memristor. 

To evaluate our designs we use SPICE to model an individual 
memristor and analyze energy consumption and performance.  
The results show that it is feasible to build a 1Gbit MemCAM 
with 1cm x 1cm area.  For a K-bit search word, the energy 
consumption is (0.44+0.82*log2(K)) fJ/bit/search (for each data 
bit stored in MemCAM) and the search time is 16+20*log2(K)) ns 
for MemCAM supporting both point and range queries, and the 
energy consumption is (0.83+0.82*log2(K)) fJ/bit/search and the 
search time is (22+20*log2(K)) ns for MemTCAM supporting 
both point and range queries.  To evaluate the search performance 
and lifetime of the hybrid data structures we construct an analytic 
model, since it is impractical to simulate the large data sets 
required. We use 5nmx5nm memristors [22] (1012 memristors per 
cm2) instead of 50nmx50nm memristors (1010 memristors per 
cm2)  so we can show the full potential of memristor-based 
storage structures to improve the performance of search 
operations. Our results show that hybrid storage structures can 
utilize range search abilities, achieve better performance than 
memory-based T-trees, and improve lifetime from minutes to 
longer than 60 years. Furthermore, TB+-tree-CAM, a hybrid 
memristor-based storage structure combining T-tree, B+-tree and 
CAM, manages to balance between performance and lifetime and 
can outperform other storage structures when taking both 
performance and lifetime into consideration. 

We make three main contributions in this paper.  First, this work 
takes the first step in exploring the combined compute/storage 
aspects of memristor arrays.  Second, we propose configurable 
hybrid data structures to improve the performance and lifetime of 
search intensive applications. Finally, we provide configurability 
by using memristors as both storage and logic and by using both 
conventional CMOS processors/cache hierarchies and memristor 
technologies.  Designers can choose to configure a memristor 
array as CAM, random access memory or hybrid CAM-memory 
to trade among power, capacity, performance and lifetime. 

We organize the remainder of this paper as follows: Section 2 
introduces background knowledge. Section 3 summarizes our 
system overview. Section 4 describes in detail both cell design 
and match signal combination of MemCAM and the analysis of 
energy consumption and searching time. Section 5 proposes 
configurable hybrid memristor-based data structures and Section 6 
evaluates the designs. Section 7 presents related work and Section 
8 concludes. 

2.   Background 
2.1   Memristors 
The concept of a memristor was first predicted by Chua in 1971 
[8] as the fourth fundamental circuit element and a physical model 
and prototype was recently presented by HP Labs [9]. A 
memristor is a non-volatile two-terminal nanoscale device that can 
switch states between ‘on’ (switch-closed) and ‘off’ (switch-
open). A memristor array has ultra-high density (e.g. 1011 bits/cm2 
with a crossbar of approximately 17 nm half-pitch [17]) and could 
scale to 100 terabits/ cm2 at 10nm feature sizes [32]. Figure 2 
shows device schematic and cross bar circuit notation of a 
memristor. When a memristor is closed (w ≅ D), it has low 
resistance and we consider it to represent logical value ‘1’; when a 
memristor is open (w≅ 0), it has high resistance and we consider it 
to represent logical value ‘0’. Recent proposals seek to utilize 
memristors to create novel nanostores for use in providing high-
capacity nonvolatile memory for big-data workloads [28].  Our 
work seeks to complement that work by exploiting the additional 
capability of memristor arrays to perform computation. 

The natural logical operation to compute with memristors is 
material implication p→q [18].  Figure 3 shows two memristors 
used to perform implication logic. The voltage applied on 
memristor p, VCOND, is a reading voltage, which does not change 
the state of p.  The voltage applied on memristor q, VSET, is a 
writing voltage that may change the state of q depending on the 
initial states of both p and q.  RG is a resistance chosen between 
the ‘on’ state resistance and the ‘off’ state resistance. From the 
truth table in Figure 3 we can see that if we initialize q to be 0, the 
two memristors perform a NOT operation, q = ¬p.  As we show 
later, other more complex operations are possible and can be 
performed in parallel.  Although we focus on memristors in this 
paper, our techniques are applicable to any technology with 
similar properties. 
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Figure 2: Memristor structure (a) and circuit notation (b) 
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2.2   Alternative Implementations 
Associative lookup can be implemented in software (e.g., hash 
tables, balanced trees, etc.) and some languages (e.g., perl, java, 
python, etc.) provide direct support for data structures that expose 
the associative lookup interface (i.e., maps, associative arrays).  
Software implementations work very well for small data sets and 
applications that are latency and bandwidth tolerant.  For 
applications with large data sets, software associative lookup 
implemented on commodity hardware can incur significant delays 
when the data set is too large to fit in conventional CMOS 
physical memory and long latency disk accesses are required. The 
high-density of emerging memories provides the opportunity to 
provide much larger physical memory reducing the need for 
external disk access in many applications.  Furthermore, software 
implementations generally require a logarithmic number of 
memory accesses (e.g., balanced tree access).  For applications 
that require sustained high throughput, this logarithmic number of 
accesses may be unacceptable even for data sets that can fit into 
memory.  Hash tables may reduce the number of accesses to O(1) 
but at the expense of underutilized memory capacity since 
collisions must be avoided.  This wasted memory capacity may be 
unacceptable for many applications. 

An alternative to software associative lookup is to provide direct 
hardware support (specialization) in the form of content 
addressable memory (CAM).  These specialized memories 
provide additional circuitry to simultaneously compare the content 
of each location to a provided key and returning either the data 
associated with the key or a set of addresses for entries with 
matching keys.  This additional circuitry introduces overhead in 
terms of power consumption and access time.  These overheads 
can limit the capacity of CAMs implemented in CMOS 
technology. Additional delays could be incurred since in many 
applications, the address of a matching entry is used to access 
other storage such as DRAM or disk.  The capacity of CMOS-
based CAMs may also be limited by the rate of scaling.  

Memristors and other emerging high-density memories (e.g., 
STTRAM) could be used to create dedicated CAMs [11, 15].  
However, combining CMOS transistors with memristors 
unnecessarily limits density and increases manufacturing 
difficulty since the CAM cell size is determined by CMOS device 
sizes rather than memristor device sizes.  Alternatively, a 
specialized design using only memristors could be used to create a 
CAM [30].  Although these techniques could increase CAM 
capacity, traditional hardware CAMs are limited to equality 
comparisons and would incur significant capacity reductions to 
provide support for even slightly more complex operations (e.g., 
range query).  Therefore, we seek to complement the capacity 
advantages of an all memristor design with the flexibility of 

configurable computation allowing designs to be tailored to 
individual application requirements. 

Many applications perform more than just a simple comparison 
and thus can benefit from more general computational ability in 
the accelerator.  High-density resistive memory can also be used 
similar to FPGAs by configuring lookup tables (LUTs) to create 
specified circuits [16].  The work in this paper differs in that we 
seek to exploit the ability of memristor’s to perform implication 
logic (thus computation) in a programmable manner by 
controlling the voltages across memristors.  LUT-based 
computing is ideal for technologies where write latency/power is 
much greater than read latency/power.  We expect memristor 
write and read characteristics to be roughly equal and may be as 
low as 10ns  [22, 29].  Nonetheless, exploring the tradeoffs 
between LUT-based computing and sequencing implication logic 
steps is an interesting avenue to explore in future work. 

3.   System Overview 
Our overall system design is shown in Figure 4.  Although this 
structure places the memristor array on the physical memory bus 
along with conventional DRAM modules, it is possible to also 
utilize a 3D stacked fabrication process similar to that advocated 
for creating nanostores [28, 32].  Regardless of the specific 
packaging approach, we envision a memristor array that resides in 
the system’s physical address space.  

The memristor subsystem is composed of a memristor array and a 
programmable controller.  The processor communicates with the 
memristor array controller using memory-mapped operations.  
The controller is responsible for applying appropriate voltages to 
perform read/write or implication logic operations using the 
memristor array. Read/write operations are ‘external’ operations 
since peripheral CMOS circuitry is required to decode the address, 
evaluate the data read out (for reads) and decide the applied 
voltages based on the data to write (for writes). In contrast, 
implication logic operations are ‘internal’ operations on data 
already stored in memristors and the results are generated and 
stored in memristors without being read out externally. Therefore, 
external accesses will take much longer than the internal 
implication logic steps.  Applying voltages to perform a series of 
implication logic steps in sequence performs computation.  Note 
that this design does not cascade memristors to create 
combinational circuits, in contrast to conventional CMOS 
transistors.  However, parallelism can be exploited by using many 
memristors to perform multiple implication logic operations per 
step. 

 
Figure 4: System Overview of Configurable Memristor 
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Figure 3: Memristor Implication Logic for q = ¬p. 
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We assume a programmable memristor array controller where the 
program specifies the sequence of voltages to apply to the 
memristor array.  Partitioning of memristors between storage and 
computation is entirely under software control since it is the 
voltages that determine compute vs. storage.  We assume the 
controller can always perform read/write operations to any portion 
of the memristor array, even the memristors used for computation.  
Configuration/specialization occurs by specifying a particular 
program for the controller to execute that augments the traditional 
read/write memory behavior.  Unfortunately, there may not be 
arbitrary flexibility in mapping computation onto the memristor 
array while still providing high performance. 

 To achieve high density, crossbar arrays are used in the 
memristor array and thus voltages are applied to entire rows and 
entire columns.  Although it is possible set individual memristor 
voltages using this two-dimensional array, the rate of computation 
may be very slow.  Instead, the mapping of computation onto the 
memristor array should exploit the two-dimensional structure such 
that many memristors can share a single voltage setting and thus 
achieve parallel operation.  In this work we perform manual 
configuration/mapping of computation onto the memristor array, 
but automated mapping is an interesting avenue of future work. 

The configurability of memristor arrays creates a spectrum of 
potential designs.  As shown in Figure 5, on one end of the 
spectrum the memristor array is configured to provide only 
storage and can be used as nonvolatile memory while at the other 
extreme is pure computation.  In between these end points is a 
diverse set of options for providing customized application 
accelerators.  In this paper we focus on search operations and 
leave exploration of more sophisticated acceleration as future 
work.  

4.   MemCAM: memristor-based CAM 
This section presents our memristor CAM design (MemCAM).  
We begin with a description of a single MemCAM cell.  We focus 
on CAM cell design and match signal combination. We assume 
peripheral circuitry required to write into and read from the 
memristor array similar to that proposed elsewhere [35].  We 
designed both CAM and TCAM using memristors with similar 
comparison and match signal combination processes.  For brevity, 
we only present the details of the memristor TCAM design that 
supports both point and range query, we continue to use the 
generic term CAM to refer to this implementation.  If only CAM 
operations are required then a slightly different design could be 
configured that uses fewer memristors per entry. 

4.1   MemCAM cell design 
Figure 6 shows how memristors in an array are organized to form 
rows of MemCAM entries. Each row contains multiple entries 

(for simplicity we show only one entry per row), each entry 
contains multiple cells, and each cell is comprised of multiple 
individual memristors. Figure 7 shows a  MemCAM cell that can 
be used for both point and range queries.  D0 and ¬D1 are two 
memristors used to store two bits representing the data bit, and K 
is the memristor used to store the input key bit. We store ¬D1 
instead of D1 in order to save one step during the comparison 
process. M1 to M4 are memristors used to perform comparison and 
store match signals. M1 and M2 are used to store ¬D0 and ¬K first. 
K and M2 are then used to compute D0˅¬K and the result is stored 
in M2, and D0 and K are used to compute ¬D0˅K and the result is 
stored in K. M4 is then used to store the value of D1 and combined 
with the values of M2 and K. Finally, M3 and M4 are cleared and 
used to store the match signal for the MemTCAM cell. 

Table 1 shows the values and meanings of cell match signals 
based on the values of D (D1D0) and K. The comparison process 
includes eleven steps. Table 2 shows voltages applied to the 
control lines, X and Y1-Y7, in a CAM cell at each step. The 
difference between voltages applied on two control lines 
connected to a memristor is the voltage across the memristor. 
VCLEAR is the voltage required to switch a memristor to its ‘off’ 
state. Table 2 also shows the states of M1 through M4 at each step. 
During the comparison process, the states of D0 and ¬D1 are not 
changed so their states are not shown in Table 2. 

4.2   Match signal combination 

 
Figure 5: Spectrum of Configurable Memristor-based 
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Figure 6: MemCAM/TCAM Organization  

 

Table 1: Values and meanings of cell match signals (M3 
& M4) based on stored Data and key bits.  

D1 D0 K M3=D1˄¬D0˄K M4=D1˄D0˄¬K  
0 0 0 0 0 D == K 0 1 1 0 0 
0 1 0 0 1 D > K 
0 0 1 1 0 D < K 
1 X X 0 0 D == K 

 

Y2 Y3Y1 Y4 Y5 Y6

X
D0 K M1 M2 M3 M4

Y7

¬D1  
 Figure 7: MemTCAM cell design: each box is a 
memristor at a junction of the crossbar array. 
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After each CAM cell finishes the eleven-step comparison and 
generates its cell match signal (CMS), we need to combine the 
match signals from all cells in an entry to generate the entry match 
signal (EMS).  
We have: 

),...,,,( 1,2,1,0, −= niiiii CMSCMSCMSCMSnofCombinatioEMS  

in which EMSi is the match signal of the ith entry in the CAM, 
CMSi,j is the match signal of the jth cell in the ith entry, and n is the 
number of cells in an entry, which is also the number of bits in the 
key word. 

We assume n to be power of two here and use recursive doubling 
[31] to combine match signals. For each Entry i, we first combine 
every CMS pair, CMSi,2j and CMSi,2j+1 simultaneously and store 
the result in the memristor used to store CMSi,2j+1. We then 
combine every CMS pair CMSi,4j and CMSi,4j+2 similarly. EMSi is 
in the memristor used to store CMSi,n-1 after log2(n) rounds.  Each 
round of match signal combination includes ten steps.  We use six 
memristors from two adjacent cells, including four memristors 
already storing the CMSs, to combine two CMSs from two cells. 

4.3   Discussion 
Using memristors as both memory and logic provides not only 
high density but also configurability.  Consider three alternatives: 
1) all memory, 2) all CAM or 3) partitioned memory+CAM.  
Furthermore, for any CAM portion, we can configure different 
number of entries with different key sizes, including very large 
keys (e.g., character strings). Specific configurations can be based 
on application requirements. 

However, one major disadvantage of MemCAM is that 
memristors have much lower endurance (1010 write cycles) than 
SRAM (1016 write cycles).  The lifetime of MemCAM is only a 
few minutes under continuous search operations. Unfortunately, 
memCAM’s lifetime cannot be improved by standard wear 
leveling techniques since all the cells are accessed simultaneously 

every cycle. To solve this problem, we need to design storage 
structures that reduce the average write frequency per cell. 

5.   Configurable Hybrid Data Structures 
This section presents several novel hybrid data structures for point 
and range queries that are designed to take advantage of the in-
place compute capabilities of memristors while alleviating the 
wear-out limitations.  They key insight behind our approach is to 
design data structures that naturally distribute operations over the 
memristor array. 

5.1   Overview 
We can reduce the average write frequency by utilizing the 
configurability of a memristor array. We can divide a memristor 
array into multiple partitions with each partition having the same 
capacity and configure one partition as CAM and the other 
partitions as memory. We can then ‘rotate’ the CAM partitions 
within the memristor array to achieve the benefit of wear leveling. 

The improvement of lifetime by using the hybrid memristor-based 
CAM-memory design is approximately proportional to the 
number of partitions. However, this design requires a large 
memristor array to obtain acceptable lifetime of a small 
MemCAM. For example, to achieve one month-lifetime for 1MB 
of MemCAM with continuous search operations requires a 35GB 
memristor array even if there are no writes to the memory 
partitions. With the improvement of memristor endurance in the 
future, this design may become more efficient, but currently the 
high storage overhead of the memristor-based CAM-memristor 
design makes it not practical. 

We can also reduce write frequency by designing a hierarchical 
storage structure. We can use a CMOS-based CAM as a buffer of 
MemCAM. We store hot data (data searched more frequently) in 
CMOS CAM buffer and store cold data in MemCAM.  The search 
frequency of MemCAM is reduced and so is the write frequency. 
The improvement of lifetime by using the hybrid CMOS-
memristor-based CAM design is dependent on the capacities of 
both CAMs and the access frequencies of both hot and cold data. 

Table 2: Memristor States and Applied voltages at Each Step of Comparison for Point and Range Query with TCAM 
(VCO = VCOND, VS = VSET, VCL=VCLEAR) 

 
 

K M1 M2 M3 M4 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

Step 1 K 0 0 0 0 0 0 VCL VCL VCL VCL 0 

Step 2 K ¬D0  0 0 0 VCO 0 VS 0 0 0 0 

Step 3 K ¬D0  ¬K  0 0 0 VCO 0 VS 0 0 0 

Step 4 K ¬D0  D0 ∨¬K  0 0 0 0 VCO VS   0 0 

Step 5 ¬D0 ∨K  ¬D0  D0 ∨¬K  0 0 VCO  VS  0 0 0 0 0 

Step 6 ¬D0 ∨K  ¬D0  D0 ∨¬K  0 D1 0 0 0 0 0 VS VC 

Step 7 ¬D0 ∨K  ¬D0  ¬D1∨D0 ∨¬K  0 D1 0 0 0 VS 0 VCO 0 

Step 8 ¬D1∨¬D0 ∨K  ¬D0  ¬D1∨D0 ∨¬K  0 D1 0 VS 0 0 0 VCO 0 

Step 9 ¬D1∨¬D0 ∨K  ¬D0  ¬D1∨D0 ∨¬K  0 0 0 0 0 0 0 VCL 0 

Step 10 ¬D1∨¬D0 ∨K  ¬D0  ¬D1∨D0 ∨¬K  D1∧¬D0 ∧K  0 0 0 0 VCO VS  0 0 

Step 11 ¬D1∨¬D0 ∨K  ¬D0  ¬D1∨D0 ∨¬K  D1∧¬D0 ∧K  D1∧D0 ∧¬K  0 VCO 0 0 0 VSET 0 
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Hot data has to be accessed 4x105 times more frequently than cold 
data in order to achieve a one-year lifetime, which is unlikely for 
many applications and limits the application area of this design. 

Partitioning a memristor-based storage structure or adding a 
CMOS-based buffer alone cannot efficiently reduce write 
frequency. Thus we combine the two methods and propose a 
series of configurable hybrid data structures to utilize the 
computation ability of memristors and provide ‘algorithmic’ 
wear-leveling to improve lifetime. We start with a logical tree 
structure and divide it into two parts, the upper levels (the levels 
near the root) and the lower levels (the levels near the leaves). We 
then implement the two parts with different data structures and 
technologies. The upper levels can be implemented as a hash table 
or a T-tree and are stored in a CMOS-based storage structure (e.g., 
cache), and the lower levels can be implemented as a CAM or 
several B+-trees and are stored in a memristor-based storage 
structure. The main idea is to direct search through the upper-level 
implementation so only one part of the memristor-based storage 
structure is accessed per search (one or two partitions of CAM, or 
one or two B+-trees). The improvement of lifetime is proportional 
to the number of CAM partitions or B+-trees when the accesses 
are uniformly distributed. When the accesses are not uniformly 
distributed, we can apply wear-leveling techniques to improve 
lifetime. 

We decide the implementations of the two parts of the logical tree 
based on whether we can efficiently generate a hash function that 
is both uniform and order-preserving. A hash function is uniform 
if it maps the expected input as evenly as possible over its output 
range, and a hash function F is order-preserving if for inputs k1 
and k2, k1<k2 implies F(k1)<F(k2). The properties of hash 
functions, together with the implementations, decide the 
functionality of the data structure – whether it can support range 
search or not. 

When we can efficiently generate a hash function that is both 
uniform and order-preserving, we implement the upper levels as a 
hash table and the lower levels as a CAM (Hash-CAM). When we 
can efficiently generate a hash function which is only uniform but 
not order-preserving, we can still implement the logical tree as 
Hash–CAM but can only perform point search, which means that 
the comparison process can only decide that whether an entry is 
equal to the input key or not. If we also want to perform range 
search, in which we want to know whether an entry is greater 
than, or less than, or equal to the input key, we have to implement 
the upper levels as a data structure with sorted data instead of a 
hash table. We choose to implement the upper levels as a T-tree in 
this case (T-tree-CAM). Based on T-tree-CAM, we propose TB+-
tree and TB+-tree-CAM to provide more configurability so we can 
further improve lifetime. 

5.2   Hash-CAM 
A Hash-CAM is a hybrid hash table and CAM data structure used 
to implement a logical tree. The hash table is used to implement 
the ith level of the tree with one node stored in one hash table 
entry. The CAM is divided into multiple partitions and one 
partition is linked with one hash table entry as shown in Figure 8. 
The hash table is used to store keys to direct search into one part 
of the CAM and the CAM is used to store all the records. 

For point search, the input key goes through the hash function and 
the search is directed to one CAM partition. The corresponding 
CAM partition is searched with the process described in Section 4 
and the matched results are read out based on entry match signals. 
For range search, the two input bound keys go through the hash 
function and the search is directed to two CAM partitions (bound 

CAM partitions). The two CAM partitions perform comparisons 
and output records with keys within the given range and any 
records in the partitions between the two bound CAM partitions.  

From the search process we can see that at most two CAM 
partitions perform computations per search. As a result, the 
improvement of lifetime is proportional to the number of CAM 
partitions (which is also the number of hash table entries) when 
searches are uniformly distributed among all CAM partitions or 
when searches are not uniformly distributes and wear-leveling 
techniques are applied to rotate data among CAM partitions. 

5.3   T-tree-CAM 
If we can only efficiently generate hash functions that are only 
uniform but not order-preserving, Hash-CAM can only support 
point search but not range search because records within a range 
may be distributed among all CAM partitions. In order to support 
range search, we replace the hash table with a T-tree to implement 
the upper levels of the logical tree. 

A T-tree is a data structure evolving from AVL trees and B-trees 
and mainly used in main-memory databases [20]. Figure 9 shows 
a T-tree node (T-node). It has a binary search nature similar to an 
AVL tree because it is a binary tree, and it has good update and 
storage characteristics similar to a B-tree because there are 
multiple elements per node. Compared with AVL trees, a T-tree 
requires fewer rotations upon delete and insert operations for 
rebalancing because of intra-node data movement. 

We implement the upper levels of the logical tree with a T-tree to 
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preserve the orders to support range search. The lower levels are 
implemented with a CAM. The CAM is divided into multiple 
partitions and one partition is linked with one node in the lowest 
level of the T-tree as shown in Figure 10. Both point search and 
range search in a T-tree-CAM are similar to a Hash-CAM. The 
only difference is that the input keys go through a T-tree instead 
of a hash function. As a result, the improvement of lifetime is also 
proportional to the number of CAM partitions (which is also the 
number of nodes at the lowest level of the T-tree) when wear-
leveling techniques are applied. 

5.4   TB+-tree 
T-tree-CAM does not require a uniform and order-preserving hash 
function to improve lifetime of memristor-based storage. 
However, the lifetime improvement is limited by the capacity of 
CMOS-based storage. In order to solve this problem, we propose 
a new hybrid data structure—a TB+-tree. A TB+-tree is a 
combination of T-tree and B+-tree. The upper levels of a logical 
tree are implemented by a T-tree and stored in CMOS-based 
storage and the lower levels are implemented by a forest of B+-
trees, stored in memristor-based storage, and traversed within the 
memristor array using the memristor controller. Each B+ tree is 
linked with a node at the lowest level of the T-tree as shown in 
Figure 11. For point search, we go through one path in one B+-tree 
to the leaf. For range search, we go through two paths in one or 
two B+-trees to the leaves. Only a part of at most two B+-trees, not 
two complete B+-trees, perform computations per search. We can 
obtain lower average write frequency (thus longer lifetime) 
compared with T-tree-CAM. We can also achieve more 
configurability based on changing the order of B+-tree. 
We implement lower levels using B+-tree instead of T-tree 
because B+-tree is shallower than T-tree, which reduces the 
average time required to perform search/delete/insert operations. 
B+-tree is not efficient for traditional main-memory databases 
because binary search is required to search within a sorted node 
and linear search is required to search within an unsorted node [7] 
which significantly increases search time.  However, the intra 
node search time can be improved by using the memristor array to 
perform comparisons between the input key and all the keys 
stored in a B+-tree node simultaneously. As a result, we can fully 
utilize the benefits of unsorted nodes to reduce write frequency. 

5.5   TB+-tree-CAM 
Both T-tree-CAM and TB+-tree have advantages and 
disadvantages. T-tree-CAM has shorter search time but limited 
lifetime. TB+-tree have longer lifetime but also longer search time. 
In order to balance performance and lifetime, we propose another 
configurable hybrid data structure in between, a TB+-tree-CAM as 
shown in Figure 12. In TB+-tree-CAM, we group leaf nodes of 
one subtree in one B+-tree and align them continuously in the 
memristor array so we can perform CAM search operations 
described in Section 5.   

The TB+-tree-CAM is the most general data structure and the 
previous tree-based structures can be viewed as degenerate cases 
that enable tuning an application to trade off performance (search 
latency) vs. lifetime. Figure 13 shows two options for tuning 
while maintaining support for insert/delete operations. Search 
operations follow black arrows and insert/delete operations follow 
gray arrows. In general, the root of the CAM allocated subtree can 
be any node of one B+-tree. If the root of the subtree is the root of 
the B+-tree, the TB+-tree-CAM becomes a T-tree-CAM (Figure 
13a). If the root of the subtree is one leaf node, TB+-tree-CAM 
becomes TB+-tree. If the root of the subtree is an internal node, 
TB+-tree-CAM becomes a data structure in between with 
moderate search time and lifetime (Figure 13b). 

5.6   Discussion 
We propose four hybrid data structures in this section. All the 
designs are based on a logical tree divided into two parts, the 
upper levels and the lower levels. The main idea is to partition the 
lower levels and for every search/insert/delete operations, direct 
access to one or two of the partitions through the upper levels. 
Since at most two partitions are accessed per operation, the write 
frequency is reduced for the same number of operation, which 
leads to lifetime improvement proportional to the number of 
partitions. We can decrease the number of partitions by decreasing 
the number of upper levels (an extreme case is MemCAM, in 
which the lower levels are implemented with a CAM and the 
number of partitions is 1) or increase the number of partitions by 
increasing the number of upper levels. Users/Designers can 
choose different numbers of partitions to trade between 
performance and lifetime based on the requirements of different 
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applications or when the endurance of memristors are improved 
by future research. 

6.   Evaluation 
We develop an analytic model to evaluate and compare the 
average record search time of six data structures, a CMOS-based 
T-tree, a memristor-based T-tree, a hybrid Hash-CAM, a hybrid 
T-tree-CAM, a hybrid TB+-tree and a hybrid TB+-tree-CAM. All 
six data structures have the upper levels stored in a CMOS-based 
cache. The CMOS-based T-tree has the lower levels stored in 
DRAM. The memristor-based T-tree has the lower levels stored in 
a memristor memory and uses conventional loads and stores to 
traverse the tree. The four hybrid data structures store the lower 
levels in a memristor array with combined compute and storage 
and can leverage the internal controller to traverse the trees. 

6.1   Energy and Access Feasibility Study 
We first evaluate the energy consumption and search time of 
MemCAM and then evaluate hybrid storage structures based on 
MemCAM performance. Although we anticipate 1011 
memristors/cm2 if we build the memristor array on 17-nm-wide 
nanowires [17] and 1012 memristors/cm2 with 5nm-scale 
memristors [1], we evaluate energy consumption and searching 
time of MemCAM based on a conservative design, a memristor 
array built on 50-nm-wide nanowires [4] with 50nm x 50nm x 
10nm memristors. Memristor density of the evaluated array is 1010 
memristors/cm2 and cell density is 109 cells/cm2, which is 100 
times denser than CMOS-based CAM. 

We use a simplified SPICE model proposed by Mahvash and 
Parker [25] to simulate switching time and power consumption of 
a single memristor. The simulation results are then used to 
calculate the energy consumption and search time of MemCAM. 
The energy consumption and search time both depend on step 
time (time required to perform a step of operation). Step time 
depends on both switching time and RC delay, which can overlap 
because switching starts as soon as the voltage across a memristor 
goes beyond a threshold voltage (the lowest voltage that can 

switch a memristor). Based on the RC delay of 35 nm Cu-Low κ 
technology (250 ps for a 1 mm line [1]), methods such as repeater 
insertion are required to obtain a < 200ps RC delay for a 1-cm-
long 50-nm-wide line and we can then obtain a 2-ns step time. 
The final results show that it is feasible to build a 1Gbit 
MemCAM with 1cm x 1cm area. With 50nmx50nm memristors 
and K-bit keywords, for MemCAM supporting both point and 
range queries, the energy consumption is (0.44+0.82*log2(K)) 
fJ/bit/search (for each data bit stored in MemCAM) and the search 
time is (16+20* log2(K)) ns , and for MemTCAM supporting both 
point and range queries, the energy consumption is (0.83+0.82* 
log2(K)) fJ/bit/search and the search time is (22+20* log2(K)) ns. 

Based on the power consumption of a single memristor, we also 
estimate the power density of MemCAM. The power density of 
MemCAM is determined based on the power consumed by both 
memristors and wires. Previous studies show that wires consume 
up to 80% of the power [4]. However, in this experiment, the 
number of memristors and the number of wires are similar while 
in a 1cm x 1cm MemCAM there are 1010 memristors but only 2 x 
105 wires. As a result, the wire power percentage in MemCAM 
should be much lower. Furthermore, wire power density can be 
reduced by methods that could dramatically reduce the wire 
resistance and capacitance [4] since interconnect power is 
proportional to the wire capacitance [2,36]. We conservatively 
assume that wires consume 50% of the total power, which leads to 
a total power density of approximate 55W/cm2 for 
MemCAM/MemTCAM supporting only point query and 
80W/cm2 for MemCAM/MemTCAM supporting both point and 
range queries. We expect similar power density as memristor 
feature size scales down, reaching the 1012 memristors/cm2 
density. The reason is that there is a linear relationship between 
the number of memristors per unit area and the memristor 
resistance and the power density depends on the ratio of the 
number of memristors per unit area to the memristor resistance.  
However, we must wait for experimental demonstrations of high-
density memristor arrays to further analyze the power dissipation. 

6.2   Analytic Model 
Table 3 shows the parameters we use to develop our analytic 
model.  We define record nodes as nodes containing pointers to 
the records. For the T-tree, all the nodes are record nodes. For the 
TB+-tree, all the nodes at upper levels and all the leaves are record 
nodes. Given the number of records NR, the order of the T-tree T 
(which means that there are at most T records in a T-node), the 
order of the B+-tree B (which means that each internal node in the 
B+-tree has at least B / 2!" #$  children and at most B children), and 

the number of upper levels LevelU, with the assumption of 100% 
node utilization (which means that every node has the maximum 
number of records) the total number of record nodes in the T-tree 

is NT =
NR

T
and and the TB+-tree the number of record nodes 

is NTB = 2
LevelU −1+

NR − 2
LevelU −1( )×T
B

. 

The total number of record nodes in the T-tree (NT) is calculated 
by dividing the number of record (NR) by the order of the T-tree 
(T). The total number of record nodes in the TB+-tree (NTB) is the 
sum of the number of record nodes at the upper levels and the 
lower levels, and the number of record nodes at the lower levels is 
calculated by dividing the number of record nodes at the lower 
levels by the order of the B+-tree (B). 

Table 3: Analytic Model Parameters 

AvgTimeT Average record search time of the T-tree 

AvgTimeTB Average record search time of the TB+-tree 

LevelU Number of upper levels 

LevelLT Number of lower levels in the T-tree 

LevelLTB Number of lower levels in the TB+-tree 

LevelLTB’ Number of lower levels in the TB+-tree-CAM 

NodeTimeU Time to search a node at upper levels 

NodeTimeLT Time to search a node at lower levels in the T-
tree 

NodeTimeLTB Time to search a node at lower levels in the 
TB+-tree 

NT Total number of nodes storing records in the T-
tree 

NTB Total number of nodes storing records in the 
TB+-tree 

NR Total number of records 

T Order of the T-tree 

B Order of the B+-tree 
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We then determine the number of lower levels in the T-tree (Level 

LT) and the TB+-tree (LevelLTB). The number of lower levels in the 
T-tree is the difference between the total number of levels in the 
T-tree and the given number of upper levels: 

LevelLT = log2
NR

T
!

""
#

$$
− LevelU . We assume that all the B+-trees in 

the TB+-tree have the same depth and the number of lower levels 
in the TB+-tree is equal to that depth, which is the logarithm of the 
number of record nodes in a B+-tree to based B, which 

produces LevelLTB = logB
NR − 2

LevelU −1( )×T
2LevelU

#

$
%
%

&

'
(
(

#

%

%
%

&

(

(
(

. 

When we search for a record, we first search for the record node 
containing the record and then search within the record node to 
find the record. For a record node at an upper level, we just need 
to access the upper levels from the root to reach it. For a record 
node in a lower level, we must traverse (access) all the upper 
levels first and then search the lower levels. The search process in 
the lower levels depends on the specific implementation: for 
software T-tree, using either CMOS or memristors, we search the 
corresponding subtree with the search process similar to the 
search process in the upper levels; for Hash-CAM and T-tree-
CAM, we search the corresponding CAM partition with the 
comparison and match signal combination described in Section 4; 
for TB+-tree, we go down the B+-tree to the leaf level and search 
the internal nodes with the comparison and match signal 
combination described in Section 4 to decide which subtree has 
the input key; for TB+-tree-CAM, we go through a per-defined 
number of B+-tree levels and search all the leaves in the 
corresponding subtree with the comparison and match signal 
combination described in Section 4. 

The time required to reach a node at the ith upper level is 
i×NodeTimeU  where i ∈ Z  and i ∈ 1,LevelU[ ] . The time 

required to reach a node at the ith lower level in the T-tree is 
LevelU ×NodeTimeU + i×NodeTimeLT  where i ∈ Z  and 
i ∈ 1,LevelLT[ ] . The time required to reach a node at the ith lower 

level in the TB+-tree is 
LevelU ×NodeTimeU + LevelLTB ×NodeTimeLTB  where i ∈ Z  and 

i ∈ 1,LevelLTB[ ] . 

We assume a random uniform distribution of keys to search and 
define the average record search time as the average time required 
to reach the corresponding record node. We also assume that each 
record node has the same number of records and calculate the 
average record search time by dividing the sum of the time 
required to reach each record node by the number of record nodes. 

Figure 14 shows how we calculate the average record search time 
for each of the five memristor-based data structures. We calculate 
the average record search time of a CMOS-based T-tree and a 
memristor-based T-tree by changing the value of NodeTimeLT in 
AvgTimeT. AvgTimeTB is the average record search time of a 
hybrid CMOS-memristor TB+-tree.  We also calculate the average 
record search time of Hash-CAM (AvgTimeHC), T-tree-CAM 
(AvgTimeTC), and TB+-tree-CAM (AvgTimeTBC) based on the 
MemCAM search time described in Section 4. The average record 
search time of Hash-CAM is the sum of the time to access the 
hash table and the time to search a CAM partition. The average 
record search time of a T-tree-CAM is the sum of the time to go 
through all upper levels in the T-tree and the time to search a 
CAM partition. The average record search time of TB+-tree-CAM 
is the sum of the time to go through all upper levels in the T-tree, 
the time to go through a predefined number of levels in a B+-tree, 
and the time to perform CAM-like search operation in a subtree. 
We do not consider the records in upper levels when we calculate 
the average record search time for these three hybrid storage 
structures because most of the records are in lower levels. 

6.3   Modeling Results and Analysis 
Our evaluation is based on 32MB cache and 128GB DRAM [33].  
Based on the densities of DRAM (15Gbit/cm2 [3]) and a 
memristor array (1Tbit/cm2 [32]), we assume an 8TB memristor 
memory and a 1TB MemCAM. We choose the number of records 
in a T-node (T) to be 10 and store 17 levels of T-tree in cache. We 
choose the number of records in a B+-tree node (B) to be 80 to 
balance between the depth and node utilization rate of the B+-tree. 
Table 4 shows the number of records we can store in different 
data structures assuming 100% node utilization rate for T-tree and 
75% node utilization rate for B+-tree. 
For CMOS-related parameters, we use the data from performance 
analysis of Intel’s latest processors [21] for NodeTimeU (16ns) 
and NodeTimeLC (60ns). For memristor-related paramters, we can 
still achieve 1-ns switching time as the scale of memristor goes 
from 50nm to 5nm (density going from 10Gbit/cm2 to 
1TGbit/cm2) since memristor switching time is proportional to 
ROFF/RON. The RC delay of wires increases as memristors scale 
down but we can use technologies such as repeater insertion in 
order to achieve the same RC delay at 5-nm scale and 50-nm 
scale. As a result, we can achieve similar search time at both 
scales. It requires one write (to write the key), two reads (one to 
read the comparison results, and one to read the address of the 

Table 4: Records For Each Data Structure 

Data structure Number of records 

Software CMOS-based T-tree 5.4 x 109 

Memristor-based T-tree 3.4 x 1011 

Hash-CAM 
6.9 x 1010 

T-tree-CAM 

TB+-tree 
2.8 x 1010 

TB+-tree-CAM 

 

AvgTimeT =

{NodeTimeU × LevelU −1( )×2LevelU +1#$ %&

+NodeTimeU × LevelU × NT − 2
LevelU +1( )

+NodeTimeLT × LevelLT − 2( )×2 LevelU+LevelLT −1( ) + 2LevelU#
$

%
&

+NodeTimeLT × LevelLT × NT − 2
LevelU+LevelLT −1( ) −1( )#

$
%
&} / NT

 

AvgTimeTB = {NodeTimeU × LevelU −1( )×2LevelU +1#$ %&

+NodeTimeU × LevelU × NTB − 2
LevelU +1( )

+NodeTimeLTB × LevelLTB × NTB − 2
LevelU +1( )} / NTB

 

AvgTimeHC = HashTime+MemCAMSeachTime  

AvgTimeTC = NodeTimeU × LevelU +MemCAMSeachTime  

AvgTimeTBC = NodeTimeU × LevelU + NodeTimeLTB × LevelLTB '
+MemCAMSeachTime

 

Figure 14: Access Time Equations 
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next node), and a comparison to search a node in the TB+-tree. We 
use 8-byte keys and 8-byte pointers thus the comparison time is 
136ns. We call the time required to perform a read/write operation 
to the memristor array from the peripheral circuitry memristor 
arrayread/write latency. We need peripheral circuitry to decode 
the address, evaluate the data read out (for reads) and decide the 
applied voltages based on the data to write (for writes) when we 

access the memristor array externally. As a result, the memristor 
array read/write latency (which varies from 10ns [22, 29] to 120ns 
[28]) is much longer than the step time of 2ns (where the 
operations occur inside the memristor array and the applied 
voltages  are known beforehand). As a result, NodeTimeLM varies 
from 166ns to 496ns. 
We first choose the number of records (R) to be 109, therefore all 
the records can be stored in any of the six data structures, and 
compare the performance of the six data structures shown in Table 
4. Figure 15 shows the average record search time as we increase 
memristor array read/write latency from 10ns to 120ns. We can 
see that only Hash-CAM and T-tree-CAM perform better than 
memory-based T-trees. The performance of TB+-tree-CAM is 
between the performance of CMOS T-tree and Memristor T-tree 
and the performance of TB+-tree is worse than both memory-
based T-trees. 

We then choose the number of records (R) to be 1010, which 
means that the capacity of DRAM is no longer high enough to 
store all the records. Figure 16 shows the average record search 
time as we increase memristor array read/write latency from 10ns 
to 120ns. We do not show the performance of software/CMOS + 
DRAM in Figure 16 since it requires disk accesses for this data 
size and the average record search time increases to milliseconds. 
We can see from Figure 16 that Hash-CAM and T-tree-CAM still 
perform better than memristor-based T-tree. TB+-tree still 
performs worse than memristor-based T-tree but the performance 
gap decreases as memristor array read/write latency increases. 
TB+-tree-CAM outperforms memristor-based T-tree as long as 
memristor array read/write latency is longer than 40ns. In general, 
TB+-tree and TB+-tree-CAM perform better than when R is 109. 
The reason is that when R is 109, the node utilization rate of B+-
trees is low, which means that we cannot benefit from the 
shallowness of B+-trees. 

We then change the number of records from 109 to 1020 to see 
how data size affects performance of the six data structures. From 
Figure 16 we can see that memristor-based T-tree has better 
performance when memristor array read/write latency is lower, so 
we choose memristor array read/write latency to be 10ns to have 
the best possible performance of memristor-based T-tree. The 
results are shown in Figure 17. We can see that the search time of 
CMOS-based T-tree, memristor-based T-tree, and TB+-tree 
increase as the number of records increases. The search time of 
Hash-CAM, T-tree-CAM, and TB+-tree-CAM remain almost the 
same. When the number of records goes beyond 1016, TB+-tree-
CAM outperforms memristor-based T-tree. 

We also calculate the theoretical maximum lifetime of the four 
hybrid data structures assuming continuous search operations, 
which is shown in Table 5.  Generally, lifetime increases as search 
time increases, since increased search time results in reduced 
write frequency. The exception here is T-tree-CAM, whose 
lifetime is limited by the capacity of cache. However, we can see 
that even in the worst case we can achieve a one-year lifetime. If 
we take into account the time required to read out the matched 
records, the lifetime will be even longer. 

 
Figure 15: Performance of various data structures vs. 

memristor latency (number or records, R, = 109) 

 
Figure 16: Performance of various data structures vs. 

memristor latency (number or records, R, = 1010) 

 
Figure 17: Search Time vs. number of records 
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From the above analysis, we observe that reducing memristor 
external read/write latency below 40ns and if the number of 
records is smaller than 1016 then memristor-based T-tree is the 
best data structure for search applications. Otherwise, TB+-tree-
CAM performs better through combined compute and storage and 
has an acceptable lifetime. 

7.   Related Work 
A memristor-based crossbar memory system has been 
demonstrated by HP Labs [35].  Strategies and peripheral circuitry 
have been designed to write into and read from a memristor array. 
The memristor memory demonstrates much higher density and 
access time comparable to CMOS RAMs. A hybrid CMOS-
memristor CAM has also been proposed to achieve larger capacity 
[11].  However, combining CMOS transistors with memristors 
reduces bit density and increases manufacturing difficulty. 

Recently several researchers have explored spin-based devices for 
both storage and computing [15, 16, 27]. In STT-MRAM [16], 
one CMOS transitor and one magnetic tunnel junction (MTJ) are 
combined to build a cell.  In MTJ-based logic units [26], MTJs are 
used to perform logic operations on data stored in other MTJs.  
Our work focuses on memristor technology with wear out 
constraints.  Exploring more general configurable accelerators 
with different technologies is an interesting area of future work. 

Other emerging memory technologies with endurance problems 
include PCM (Phase Changing Memory). Recent work proposes 
new B+-tree algorithms for PCM to improve performance and 
reduce writes [7]. They design unsorted node organizations to 
reduce the number of writes incurred during insert and delete 
operations. Their results show that an approach where only the 
leaves are unsorted performs better than when all the nodes are 
unsorted. The reason is that it requires linear time to search within 
a node in PCM. However, with the computation ability of 
memristors, we can perform simultaneous comparisons and 
reduce search time within a node, which makes the unsorted 
scheme a better choice for in-place computing technologies. 

Extensive research has been performed on processing-in-memory 
(PIM) to improve performance by combining processing units and 
memory [10, 14, 24, 26]. Terasys [14] augments a standard 4-bit 
memory with a single-bit ALU controlling each column of 
memory. In DAAM (Dynamic Associative Access Memory) [24] 
a large number of small processing elements are put in a DRAM’s 
sense amps. DIVA [10] incorporates multiple PIM chips to a 
conventional microprocessor. Smart Memories [26] has multiple 
processing tiles which can be configured based on the 
requirements of applications. The main idea of PIM is to combine 
compute and storage, similar to our proposed data structures. 

Recent research [23] “disaggregated” memory to expand and 
share memory across servers. With memory capacity increase, we 
are able to store more data and obtain more benefits from our 
hybrid data structures.  Furthermore, by performing in-place 
computation the disaggregated memory could serve as an 
application appliance rather than simply memory. 

8.   Conclusion 
Memristors are an emerging technology with potential to provide 
high-density storage augmented with in-place computing through 
implication logic.  In this paper we explore this combined storage 
compute as a method to accelerate point and range search queries, 
which serve as specific instances of more general configurable 
accelerators.  We first show how to use implication logic to create 
a configurable CAM that can support both point and range 

queries; however, low endurance of memristors limits the benefit 
we can obtain from these storage structures. To more fully utilize 
the computation ability of memristors and overcome the 
endurance problem, we introduce novel data structures for use 
with memristor-based storage+compute structures. 

We first propose MemCAM, a configurable memristor-based 
CAM design. The computation ability of memristors makes it 
possible to perform range search using MemCAM while the high 
density of memristors provides an opportunity to build CAMs 
with large capacity and small area. We use SPICE to model 
memristor power and performance. With 50nmx50nm memristors 
and a K-bit search word, for a MemCAM supporting both point 
and range queries, the energy consumption is (0.44+0.82* 
log2(K)) fJ/bit/search and the search time is (16+20*log2(K)) ns , 
and for MemTCAM supporting both point and range queries, the 
energy consumption is (0.83+0.82* log2(K)) fJ/bit/search and the 
search time is (22+20* log2(K)) ns. 

We then propose a series of configurable hybrid data structures 
using both conventional CMOS cache hierarchies and memristor 
technologies to solve the endurance problem. These data 
structures can be reconfigured to trade between performance and 
lifetime and to adapt to future memristors with improved 
endurance. We use an analytic model to calculate and compare the 
performance and lifetime of two memory-based T-trees and four 
hybrid data structures. The results show that hybrid data structures 
can utilize MemCAM search abilities and improve lifetime from 
seconds to years.  Furthermore, TB+-tree-CAM, a hybrid CMOS-
memristor data structure combining T-tree, B+-tree and CAM, 
manages to balance between performance and lifetime and can 
outperform other data structures when taking both performance 
and lifetime into consideration. 
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