
1

Combined Compute and Storage: Configurable Memristor
Arrays to Accelerate Search
Yang Liu, Chris Dwyer, Alvin R. Lebeck

Duke University

ABSTRACT
Emerging technologies present opportunities for system designers
to meet the challenges presented by competing trends of big data
analytics and limitations on CMOS scaling. Specifically,
memristors are an emerging high-density technology where the
individual memristors can be used as storage or to perform
computation. The voltage applied across a memristor determines
its behavior (storage vs. compute), which enables a configurable
memristor substrate that can embed computation with storage.

This paper explores accelerating point and range search queries
as instances of the more general configurable combined compute
and storage capabilities of memristor arrays. We first present
MemCAM, a configurable memristor-based content addressable
memory for the cases when fast, infrequent searches over large
datasets are required. For frequent searches, memristor lifetime
becomes a concern. To increase memristor array lifetime we
introduce hybrid data structures that combine trees with
MemCAM using conventional CMOS processor/cache hierarchies
for the upper levels of the tree and configurable memristor
technologies for lower levels.

We use SPICE to analyze energy consumption and access time of
memristors and use analytic models to evaluate the performance
of configurable hybrid data structures. The results show that with
acceptable energy consumption our configurable hybrid data
structures improve performance of search intensive applications
and achieve lifetime in years or decades under continuous queries.
Furthermore, the configurability of memristor arrays and the
proposed data structures provide opportunities to tune the trade-
off between performance and lifetime and the data structures can
be easily adapted to future memristors or other technologies with
improved endurance.

Categories and Subject Descriptors1
B.3.2 [Hardware]: Design Styles – associative memories. C.1
[Computer Systems Organization]: Procesor Architectures –
multiple data stream architectures, heterogeneous (hybrid)
systems. E.1 [Data] – trees.

General Terms
Algorithms, Design, Performance, Reliability.

Keywords
Emerging technology, specialization, memory systems.

1. INTRODUCTION
Workload and technology trends are significant driving forces
behind computer systems design. Three significant current trends
are large data sets, limits of CMOS power dissipation, and
emerging technologies. First, the desire to query and analyze an

1 Yang Liu is currently with Oracle, this work was performed

while at Duke University.

increasingly large amount of data presents significant algorithm
and systems challenges, e.g., [2, 6]. Second, the power
dissipation limits of current CMOS packaging create an
architectural trend toward the design of application accelerators
that provide customized hardware for improving the performance
of common workload scenarios [5, 12, 13, 34]. Third, scaling
limits of CMOS motivate the need for alternative technologies to
augment or supplant CMOS [3]. The confluence of these three
trends presents an opportunity to explore new approaches that
span traditional system abstraction boundaries from technology up
through applications.

This paper explores memristors⎯an emerging high-density
technology⎯where the individual memristors can be used either
for non-volatile storage or to perform computation [8, 9, 18, 19,
29, 32, 35]. The voltage applied across a memristor determines its
behavior (storage vs. compute), which enables configurable use of
the memristor substrate to embed computation with storage. We
propose using memristor arrays as a single combined
compute/storage substrate that can be dynamically configured to
provide customized computational support for big-data and other
applications. In this paper, we focus on two types of search
operations (point and range queries) as specific instances of the
more general specialized accelerators. Search is an integral part
of many applications including databases, machine learning,
network routing, DNA sequencing; and recent research has
explored methods for exploiting other new technologies for
improving search [15] or database algorithms [7].

Memristors have the potential to provide higher capacity
(1012/cm2) [32] than CMOS with switching times as low as 1ns
an external array access times as low as 10ns [22, 29]. The
memristive computation we explore is implication logic [4],
which makes it possible to perform computation within the
storage structure. Unfortunately, memristors have much lower
endurance (1010 write cycles [36]) than CMOS devices (1016 write
cycles for SRAM [11]) and in-storage computing further
exacerbates the problem since each implication logic operation
could be a memristor write. The challenge is to exploit the
density and combined compute/storage aspect of memristors
while maintaining acceptable lifetimes.

To meet the above challenges we first propose MemCAM, a
configurable memristor-based content addressable memory
(CAM). A search is performed by applying the same sequence of
implication logic operations to each MemCAM cell in parallel.
MemCAM can be used for either point or range queries by simply
changing the allocation of memristors used for compute vs.
storage and using a slightly different sequence of implication
logic operations to perform greater than/less than comparisons
instead of only equality. MemCAM is best suited for low query
rates since its lifetime is only a few minutes under continuous
queries. Standard wear leveling techniques are inadequate for
MemCAM since all cells are accessed each query.

2

To provide long lifetime under high query rates, we introduce
configurable hybrid data structures that use both conventional
CMOS processors/cache hierarchies and memristors for
compute/storage. Our new data structures combine T-trees, B+-
trees, and MemCAM to obtain a balance between search time and
lifetime by exploiting a heterogeneous computing environment.
The upper levels of the trees, accessed frequently, are
implemented in software using conventional processors and
caching methods and serve to distribute requests over the less
frequently accessed remaining data⎯a technique we call
algorithmic wear leveling. The memristor array and an associated
programmable controller implements lower level tree traversal
and/or MemCAM operations. These new data structures can be
reconfigured to trade between performance and lifetime for a
specific usage scenario and to adapt to future memristors with
improved endurance.
The qualitative design space of memristor-based storage
structures is shown in Figure 1. The lifetime of a memristor-based
memory is the longest due to low write frequency and can be
further improved by standard wear-leveling techniques. However,
the search time of a memristor-based memory is the longest, and
increases as data size increases. MemCAM has the shortest
search time because all data items can be searched simultaneously
but also has the shortest lifetime due to high write frequency.
Wear leveling techniques cannot improve the lifetime of
MemCAM because writes are already uniform. As long as
endurance is limited for memristors, hybrid data structures are
better choices because writes are distributed and occur less
frequently per memristor.

To evaluate our designs we use SPICE to model an individual
memristor and analyze energy consumption and performance.
The results show that it is feasible to build a 1Gbit MemCAM
with 1cm x 1cm area. For a K-bit search word, the energy
consumption is (0.44+0.82*log2(K)) fJ/bit/search (for each data
bit stored in MemCAM) and the search time is 16+20*log2(K)) ns
for MemCAM supporting both point and range queries, and the
energy consumption is (0.83+0.82*log2(K)) fJ/bit/search and the
search time is (22+20*log2(K)) ns for MemTCAM supporting
both point and range queries. To evaluate the search performance
and lifetime of the hybrid data structures we construct an analytic
model, since it is impractical to simulate the large data sets
required. We use 5nmx5nm memristors [22] (1012 memristors per
cm2) instead of 50nmx50nm memristors (1010 memristors per
cm2) so we can show the full potential of memristor-based
storage structures to improve the performance of search
operations. Our results show that hybrid storage structures can
utilize range search abilities, achieve better performance than
memory-based T-trees, and improve lifetime from minutes to
longer than 60 years. Furthermore, TB+-tree-CAM, a hybrid
memristor-based storage structure combining T-tree, B+-tree and
CAM, manages to balance between performance and lifetime and
can outperform other storage structures when taking both
performance and lifetime into consideration.

We make three main contributions in this paper. First, this work
takes the first step in exploring the combined compute/storage
aspects of memristor arrays. Second, we propose configurable
hybrid data structures to improve the performance and lifetime of
search intensive applications. Finally, we provide configurability
by using memristors as both storage and logic and by using both
conventional CMOS processors/cache hierarchies and memristor
technologies. Designers can choose to configure a memristor
array as CAM, random access memory or hybrid CAM-memory
to trade among power, capacity, performance and lifetime.

We organize the remainder of this paper as follows: Section 2
introduces background knowledge. Section 3 summarizes our
system overview. Section 4 describes in detail both cell design
and match signal combination of MemCAM and the analysis of
energy consumption and searching time. Section 5 proposes
configurable hybrid memristor-based data structures and Section 6
evaluates the designs. Section 7 presents related work and Section
8 concludes.

2. Background
2.1 Memristors
The concept of a memristor was first predicted by Chua in 1971
[8] as the fourth fundamental circuit element and a physical model
and prototype was recently presented by HP Labs [9]. A
memristor is a non-volatile two-terminal nanoscale device that can
switch states between ‘on’ (switch-closed) and ‘off’ (switch-
open). A memristor array has ultra-high density (e.g. 1011 bits/cm2
with a crossbar of approximately 17 nm half-pitch [17]) and could
scale to 100 terabits/ cm2 at 10nm feature sizes [32]. Figure 2
shows device schematic and cross bar circuit notation of a
memristor. When a memristor is closed (w ≅ D), it has low
resistance and we consider it to represent logical value ‘1’; when a
memristor is open (w≅ 0), it has high resistance and we consider it
to represent logical value ‘0’. Recent proposals seek to utilize
memristors to create novel nanostores for use in providing high-
capacity nonvolatile memory for big-data workloads [28]. Our
work seeks to complement that work by exploiting the additional
capability of memristor arrays to perform computation.

The natural logical operation to compute with memristors is
material implication p→q [18]. Figure 3 shows two memristors
used to perform implication logic. The voltage applied on
memristor p, VCOND, is a reading voltage, which does not change
the state of p. The voltage applied on memristor q, VSET, is a
writing voltage that may change the state of q depending on the
initial states of both p and q. RG is a resistance chosen between
the ‘on’ state resistance and the ‘off’ state resistance. From the
truth table in Figure 3 we can see that if we initialize q to be 0, the
two memristors perform a NOT operation, q = ¬p. As we show
later, other more complex operations are possible and can be
performed in parallel. Although we focus on memristors in this
paper, our techniques are applicable to any technology with
similar properties.

Hybrid Data
Structures

MemCAM

Memristor-­
based
Memory

Lifetime

Se
ar
ch
 T
im
e

Figure 1: Design Space of Configurable Memristor

Arrays for Search

Doped Undoped

w

D

 (a) (b)
Figure 2: Memristor structure (a) and circuit notation (b)

3

2.2 Alternative Implementations
Associative lookup can be implemented in software (e.g., hash
tables, balanced trees, etc.) and some languages (e.g., perl, java,
python, etc.) provide direct support for data structures that expose
the associative lookup interface (i.e., maps, associative arrays).
Software implementations work very well for small data sets and
applications that are latency and bandwidth tolerant. For
applications with large data sets, software associative lookup
implemented on commodity hardware can incur significant delays
when the data set is too large to fit in conventional CMOS
physical memory and long latency disk accesses are required. The
high-density of emerging memories provides the opportunity to
provide much larger physical memory reducing the need for
external disk access in many applications. Furthermore, software
implementations generally require a logarithmic number of
memory accesses (e.g., balanced tree access). For applications
that require sustained high throughput, this logarithmic number of
accesses may be unacceptable even for data sets that can fit into
memory. Hash tables may reduce the number of accesses to O(1)
but at the expense of underutilized memory capacity since
collisions must be avoided. This wasted memory capacity may be
unacceptable for many applications.

An alternative to software associative lookup is to provide direct
hardware support (specialization) in the form of content
addressable memory (CAM). These specialized memories
provide additional circuitry to simultaneously compare the content
of each location to a provided key and returning either the data
associated with the key or a set of addresses for entries with
matching keys. This additional circuitry introduces overhead in
terms of power consumption and access time. These overheads
can limit the capacity of CAMs implemented in CMOS
technology. Additional delays could be incurred since in many
applications, the address of a matching entry is used to access
other storage such as DRAM or disk. The capacity of CMOS-
based CAMs may also be limited by the rate of scaling.

Memristors and other emerging high-density memories (e.g.,
STTRAM) could be used to create dedicated CAMs [11, 15].
However, combining CMOS transistors with memristors
unnecessarily limits density and increases manufacturing
difficulty since the CAM cell size is determined by CMOS device
sizes rather than memristor device sizes. Alternatively, a
specialized design using only memristors could be used to create a
CAM [30]. Although these techniques could increase CAM
capacity, traditional hardware CAMs are limited to equality
comparisons and would incur significant capacity reductions to
provide support for even slightly more complex operations (e.g.,
range query). Therefore, we seek to complement the capacity
advantages of an all memristor design with the flexibility of

configurable computation allowing designs to be tailored to
individual application requirements.

Many applications perform more than just a simple comparison
and thus can benefit from more general computational ability in
the accelerator. High-density resistive memory can also be used
similar to FPGAs by configuring lookup tables (LUTs) to create
specified circuits [16]. The work in this paper differs in that we
seek to exploit the ability of memristor’s to perform implication
logic (thus computation) in a programmable manner by
controlling the voltages across memristors. LUT-based
computing is ideal for technologies where write latency/power is
much greater than read latency/power. We expect memristor
write and read characteristics to be roughly equal and may be as
low as 10ns [22, 29]. Nonetheless, exploring the tradeoffs
between LUT-based computing and sequencing implication logic
steps is an interesting avenue to explore in future work.

3. System Overview
Our overall system design is shown in Figure 4. Although this
structure places the memristor array on the physical memory bus
along with conventional DRAM modules, it is possible to also
utilize a 3D stacked fabrication process similar to that advocated
for creating nanostores [28, 32]. Regardless of the specific
packaging approach, we envision a memristor array that resides in
the system’s physical address space.

The memristor subsystem is composed of a memristor array and a
programmable controller. The processor communicates with the
memristor array controller using memory-mapped operations.
The controller is responsible for applying appropriate voltages to
perform read/write or implication logic operations using the
memristor array. Read/write operations are ‘external’ operations
since peripheral CMOS circuitry is required to decode the address,
evaluate the data read out (for reads) and decide the applied
voltages based on the data to write (for writes). In contrast,
implication logic operations are ‘internal’ operations on data
already stored in memristors and the results are generated and
stored in memristors without being read out externally. Therefore,
external accesses will take much longer than the internal
implication logic steps. Applying voltages to perform a series of
implication logic steps in sequence performs computation. Note
that this design does not cascade memristors to create
combinational circuits, in contrast to conventional CMOS
transistors. However, parallelism can be exploited by using many
memristors to perform multiple implication logic operations per
step.

Figure 4: System Overview of Configurable Memristor

Array

VCOND VSET

p q

RG

p q q

0 0 1
0 1 1
1 0 0
1 1 1

Figure 3: Memristor Implication Logic for q = ¬p.

4

We assume a programmable memristor array controller where the
program specifies the sequence of voltages to apply to the
memristor array. Partitioning of memristors between storage and
computation is entirely under software control since it is the
voltages that determine compute vs. storage. We assume the
controller can always perform read/write operations to any portion
of the memristor array, even the memristors used for computation.
Configuration/specialization occurs by specifying a particular
program for the controller to execute that augments the traditional
read/write memory behavior. Unfortunately, there may not be
arbitrary flexibility in mapping computation onto the memristor
array while still providing high performance.

 To achieve high density, crossbar arrays are used in the
memristor array and thus voltages are applied to entire rows and
entire columns. Although it is possible set individual memristor
voltages using this two-dimensional array, the rate of computation
may be very slow. Instead, the mapping of computation onto the
memristor array should exploit the two-dimensional structure such
that many memristors can share a single voltage setting and thus
achieve parallel operation. In this work we perform manual
configuration/mapping of computation onto the memristor array,
but automated mapping is an interesting avenue of future work.

The configurability of memristor arrays creates a spectrum of
potential designs. As shown in Figure 5, on one end of the
spectrum the memristor array is configured to provide only
storage and can be used as nonvolatile memory while at the other
extreme is pure computation. In between these end points is a
diverse set of options for providing customized application
accelerators. In this paper we focus on search operations and
leave exploration of more sophisticated acceleration as future
work.

4. MemCAM: memristor-based CAM
This section presents our memristor CAM design (MemCAM).
We begin with a description of a single MemCAM cell. We focus
on CAM cell design and match signal combination. We assume
peripheral circuitry required to write into and read from the
memristor array similar to that proposed elsewhere [35]. We
designed both CAM and TCAM using memristors with similar
comparison and match signal combination processes. For brevity,
we only present the details of the memristor TCAM design that
supports both point and range query, we continue to use the
generic term CAM to refer to this implementation. If only CAM
operations are required then a slightly different design could be
configured that uses fewer memristors per entry.

4.1 MemCAM cell design
Figure 6 shows how memristors in an array are organized to form
rows of MemCAM entries. Each row contains multiple entries

(for simplicity we show only one entry per row), each entry
contains multiple cells, and each cell is comprised of multiple
individual memristors. Figure 7 shows a MemCAM cell that can
be used for both point and range queries. D0 and ¬D1 are two
memristors used to store two bits representing the data bit, and K
is the memristor used to store the input key bit. We store ¬D1
instead of D1 in order to save one step during the comparison
process. M1 to M4 are memristors used to perform comparison and
store match signals. M1 and M2 are used to store ¬D0 and ¬K first.
K and M2 are then used to compute D0˅¬K and the result is stored
in M2, and D0 and K are used to compute ¬D0˅K and the result is
stored in K. M4 is then used to store the value of D1 and combined
with the values of M2 and K. Finally, M3 and M4 are cleared and
used to store the match signal for the MemTCAM cell.

Table 1 shows the values and meanings of cell match signals
based on the values of D (D1D0) and K. The comparison process
includes eleven steps. Table 2 shows voltages applied to the
control lines, X and Y1-Y7, in a CAM cell at each step. The
difference between voltages applied on two control lines
connected to a memristor is the voltage across the memristor.
VCLEAR is the voltage required to switch a memristor to its ‘off’
state. Table 2 also shows the states of M1 through M4 at each step.
During the comparison process, the states of D0 and ¬D1 are not
changed so their states are not shown in Table 2.

4.2 Match signal combination

Figure 5: Spectrum of Configurable Memristor-based

Computing

……...

……... ……... ……...

……... ……... ……...

……... ……... ……...

……... ……... ……...

one memristor
one MemCAM/

MemTCAM cell with
multiple memristors

one MemCAM/
MemTCAM entry
with 3 cells

one MemCAM/
MemTCAM with

3 entries

Figure 6: MemCAM/TCAM Organization

Table 1: Values and meanings of cell match signals (M3
& M4) based on stored Data and key bits.

D1 D0 K M3=D1˄¬D0˄K M4=D1˄D0˄¬K
0 0 0 0 0 D == K 0 1 1 0 0
0 1 0 0 1 D > K
0 0 1 1 0 D < K
1 X X 0 0 D == K

Y2 Y3Y1 Y4 Y5 Y6

X
D0 K M1 M2 M3 M4

Y7

¬D1
 Figure 7: MemTCAM cell design: each box is a
memristor at a junction of the crossbar array.

5

After each CAM cell finishes the eleven-step comparison and
generates its cell match signal (CMS), we need to combine the
match signals from all cells in an entry to generate the entry match
signal (EMS).
We have:

),...,,,(1,2,1,0, −= niiiii CMSCMSCMSCMSnofCombinatioEMS

in which EMSi is the match signal of the ith entry in the CAM,
CMSi,j is the match signal of the jth cell in the ith entry, and n is the
number of cells in an entry, which is also the number of bits in the
key word.

We assume n to be power of two here and use recursive doubling
[31] to combine match signals. For each Entry i, we first combine
every CMS pair, CMSi,2j and CMSi,2j+1 simultaneously and store
the result in the memristor used to store CMSi,2j+1. We then
combine every CMS pair CMSi,4j and CMSi,4j+2 similarly. EMSi is
in the memristor used to store CMSi,n-1 after log2(n) rounds. Each
round of match signal combination includes ten steps. We use six
memristors from two adjacent cells, including four memristors
already storing the CMSs, to combine two CMSs from two cells.

4.3 Discussion
Using memristors as both memory and logic provides not only
high density but also configurability. Consider three alternatives:
1) all memory, 2) all CAM or 3) partitioned memory+CAM.
Furthermore, for any CAM portion, we can configure different
number of entries with different key sizes, including very large
keys (e.g., character strings). Specific configurations can be based
on application requirements.

However, one major disadvantage of MemCAM is that
memristors have much lower endurance (1010 write cycles) than
SRAM (1016 write cycles). The lifetime of MemCAM is only a
few minutes under continuous search operations. Unfortunately,
memCAM’s lifetime cannot be improved by standard wear
leveling techniques since all the cells are accessed simultaneously

every cycle. To solve this problem, we need to design storage
structures that reduce the average write frequency per cell.

5. Configurable Hybrid Data Structures
This section presents several novel hybrid data structures for point
and range queries that are designed to take advantage of the in-
place compute capabilities of memristors while alleviating the
wear-out limitations. They key insight behind our approach is to
design data structures that naturally distribute operations over the
memristor array.

5.1 Overview
We can reduce the average write frequency by utilizing the
configurability of a memristor array. We can divide a memristor
array into multiple partitions with each partition having the same
capacity and configure one partition as CAM and the other
partitions as memory. We can then ‘rotate’ the CAM partitions
within the memristor array to achieve the benefit of wear leveling.

The improvement of lifetime by using the hybrid memristor-based
CAM-memory design is approximately proportional to the
number of partitions. However, this design requires a large
memristor array to obtain acceptable lifetime of a small
MemCAM. For example, to achieve one month-lifetime for 1MB
of MemCAM with continuous search operations requires a 35GB
memristor array even if there are no writes to the memory
partitions. With the improvement of memristor endurance in the
future, this design may become more efficient, but currently the
high storage overhead of the memristor-based CAM-memristor
design makes it not practical.

We can also reduce write frequency by designing a hierarchical
storage structure. We can use a CMOS-based CAM as a buffer of
MemCAM. We store hot data (data searched more frequently) in
CMOS CAM buffer and store cold data in MemCAM. The search
frequency of MemCAM is reduced and so is the write frequency.
The improvement of lifetime by using the hybrid CMOS-
memristor-based CAM design is dependent on the capacities of
both CAMs and the access frequencies of both hot and cold data.

Table 2: Memristor States and Applied voltages at Each Step of Comparison for Point and Range Query with TCAM
(VCO = VCOND, VS = VSET, VCL=VCLEAR)

K M1 M2 M3 M4 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Step 1 K 0 0 0 0 0 0 VCL VCL VCL VCL 0

Step 2 K ¬D0 0 0 0 VCO 0 VS 0 0 0 0

Step 3 K ¬D0 ¬K 0 0 0 VCO 0 VS 0 0 0

Step 4 K ¬D0 D0 ∨¬K 0 0 0 0 VCO VS 0 0

Step 5 ¬D0 ∨K ¬D0 D0 ∨¬K 0 0 VCO VS 0 0 0 0 0

Step 6 ¬D0 ∨K ¬D0 D0 ∨¬K 0 D1 0 0 0 0 0 VS VC

Step 7 ¬D0 ∨K ¬D0 ¬D1∨D0 ∨¬K 0 D1 0 0 0 VS 0 VCO 0

Step 8 ¬D1∨¬D0 ∨K ¬D0 ¬D1∨D0 ∨¬K 0 D1 0 VS 0 0 0 VCO 0

Step 9 ¬D1∨¬D0 ∨K ¬D0 ¬D1∨D0 ∨¬K 0 0 0 0 0 0 0 VCL 0

Step 10 ¬D1∨¬D0 ∨K ¬D0 ¬D1∨D0 ∨¬K D1∧¬D0 ∧K 0 0 0 0 VCO VS 0 0

Step 11 ¬D1∨¬D0 ∨K ¬D0 ¬D1∨D0 ∨¬K D1∧¬D0 ∧K D1∧D0 ∧¬K 0 VCO 0 0 0 VSET 0

6

Hot data has to be accessed 4x105 times more frequently than cold
data in order to achieve a one-year lifetime, which is unlikely for
many applications and limits the application area of this design.

Partitioning a memristor-based storage structure or adding a
CMOS-based buffer alone cannot efficiently reduce write
frequency. Thus we combine the two methods and propose a
series of configurable hybrid data structures to utilize the
computation ability of memristors and provide ‘algorithmic’
wear-leveling to improve lifetime. We start with a logical tree
structure and divide it into two parts, the upper levels (the levels
near the root) and the lower levels (the levels near the leaves). We
then implement the two parts with different data structures and
technologies. The upper levels can be implemented as a hash table
or a T-tree and are stored in a CMOS-based storage structure (e.g.,
cache), and the lower levels can be implemented as a CAM or
several B+-trees and are stored in a memristor-based storage
structure. The main idea is to direct search through the upper-level
implementation so only one part of the memristor-based storage
structure is accessed per search (one or two partitions of CAM, or
one or two B+-trees). The improvement of lifetime is proportional
to the number of CAM partitions or B+-trees when the accesses
are uniformly distributed. When the accesses are not uniformly
distributed, we can apply wear-leveling techniques to improve
lifetime.

We decide the implementations of the two parts of the logical tree
based on whether we can efficiently generate a hash function that
is both uniform and order-preserving. A hash function is uniform
if it maps the expected input as evenly as possible over its output
range, and a hash function F is order-preserving if for inputs k1
and k2, k1<k2 implies F(k1)<F(k2). The properties of hash
functions, together with the implementations, decide the
functionality of the data structure – whether it can support range
search or not.

When we can efficiently generate a hash function that is both
uniform and order-preserving, we implement the upper levels as a
hash table and the lower levels as a CAM (Hash-CAM). When we
can efficiently generate a hash function which is only uniform but
not order-preserving, we can still implement the logical tree as
Hash–CAM but can only perform point search, which means that
the comparison process can only decide that whether an entry is
equal to the input key or not. If we also want to perform range
search, in which we want to know whether an entry is greater
than, or less than, or equal to the input key, we have to implement
the upper levels as a data structure with sorted data instead of a
hash table. We choose to implement the upper levels as a T-tree in
this case (T-tree-CAM). Based on T-tree-CAM, we propose TB+-
tree and TB+-tree-CAM to provide more configurability so we can
further improve lifetime.

5.2 Hash-CAM
A Hash-CAM is a hybrid hash table and CAM data structure used
to implement a logical tree. The hash table is used to implement
the ith level of the tree with one node stored in one hash table
entry. The CAM is divided into multiple partitions and one
partition is linked with one hash table entry as shown in Figure 8.
The hash table is used to store keys to direct search into one part
of the CAM and the CAM is used to store all the records.

For point search, the input key goes through the hash function and
the search is directed to one CAM partition. The corresponding
CAM partition is searched with the process described in Section 4
and the matched results are read out based on entry match signals.
For range search, the two input bound keys go through the hash
function and the search is directed to two CAM partitions (bound

CAM partitions). The two CAM partitions perform comparisons
and output records with keys within the given range and any
records in the partitions between the two bound CAM partitions.

From the search process we can see that at most two CAM
partitions perform computations per search. As a result, the
improvement of lifetime is proportional to the number of CAM
partitions (which is also the number of hash table entries) when
searches are uniformly distributed among all CAM partitions or
when searches are not uniformly distributes and wear-leveling
techniques are applied to rotate data among CAM partitions.

5.3 T-tree-CAM
If we can only efficiently generate hash functions that are only
uniform but not order-preserving, Hash-CAM can only support
point search but not range search because records within a range
may be distributed among all CAM partitions. In order to support
range search, we replace the hash table with a T-tree to implement
the upper levels of the logical tree.

A T-tree is a data structure evolving from AVL trees and B-trees
and mainly used in main-memory databases [20]. Figure 9 shows
a T-tree node (T-node). It has a binary search nature similar to an
AVL tree because it is a binary tree, and it has good update and
storage characteristics similar to a B-tree because there are
multiple elements per node. Compared with AVL trees, a T-tree
requires fewer rotations upon delete and insert operations for
rebalancing because of intra-node data movement.

We implement the upper levels of the logical tree with a T-tree to

E
nt
ry
 1

E
nt
ry
 2

E
nt
ry
 3

………………………..

E
nt
ry
 h

P
ar
tit
io
n
1

P
ar
tit
io
n
2

P
ar
tit
io
n
3

………………………….

P
ar
tit
io
n
h

Software-­
implemented
Hash Table

Memristor-­
based CAM

Figure 8: HASH CAM

Data1 Data2 Data3 ……. Datam

Parent
Pointer

Left
Child
Pointer

Right
Child
Pointer

Figure 9: A T-tree Node (T-Node)

Pa
rti
tio
n
1

Pa
rti
tio
n
2

Pa
rti
tio
n
3

……………

Pa
rti
tio
n
h

Software-­
implemented

T-­tree

Memristor-­
based CAM

Pa
rti
tio
n
4

Pa
rti
tio
n
h-­
1

…………….

Figure 10: A T-tree CAM

7

preserve the orders to support range search. The lower levels are
implemented with a CAM. The CAM is divided into multiple
partitions and one partition is linked with one node in the lowest
level of the T-tree as shown in Figure 10. Both point search and
range search in a T-tree-CAM are similar to a Hash-CAM. The
only difference is that the input keys go through a T-tree instead
of a hash function. As a result, the improvement of lifetime is also
proportional to the number of CAM partitions (which is also the
number of nodes at the lowest level of the T-tree) when wear-
leveling techniques are applied.

5.4 TB+-tree
T-tree-CAM does not require a uniform and order-preserving hash
function to improve lifetime of memristor-based storage.
However, the lifetime improvement is limited by the capacity of
CMOS-based storage. In order to solve this problem, we propose
a new hybrid data structure—a TB+-tree. A TB+-tree is a
combination of T-tree and B+-tree. The upper levels of a logical
tree are implemented by a T-tree and stored in CMOS-based
storage and the lower levels are implemented by a forest of B+-
trees, stored in memristor-based storage, and traversed within the
memristor array using the memristor controller. Each B+ tree is
linked with a node at the lowest level of the T-tree as shown in
Figure 11. For point search, we go through one path in one B+-tree
to the leaf. For range search, we go through two paths in one or
two B+-trees to the leaves. Only a part of at most two B+-trees, not
two complete B+-trees, perform computations per search. We can
obtain lower average write frequency (thus longer lifetime)
compared with T-tree-CAM. We can also achieve more
configurability based on changing the order of B+-tree.
We implement lower levels using B+-tree instead of T-tree
because B+-tree is shallower than T-tree, which reduces the
average time required to perform search/delete/insert operations.
B+-tree is not efficient for traditional main-memory databases
because binary search is required to search within a sorted node
and linear search is required to search within an unsorted node [7]
which significantly increases search time. However, the intra
node search time can be improved by using the memristor array to
perform comparisons between the input key and all the keys
stored in a B+-tree node simultaneously. As a result, we can fully
utilize the benefits of unsorted nodes to reduce write frequency.

5.5 TB+-tree-CAM
Both T-tree-CAM and TB+-tree have advantages and
disadvantages. T-tree-CAM has shorter search time but limited
lifetime. TB+-tree have longer lifetime but also longer search time.
In order to balance performance and lifetime, we propose another
configurable hybrid data structure in between, a TB+-tree-CAM as
shown in Figure 12. In TB+-tree-CAM, we group leaf nodes of
one subtree in one B+-tree and align them continuously in the
memristor array so we can perform CAM search operations
described in Section 5.

The TB+-tree-CAM is the most general data structure and the
previous tree-based structures can be viewed as degenerate cases
that enable tuning an application to trade off performance (search
latency) vs. lifetime. Figure 13 shows two options for tuning
while maintaining support for insert/delete operations. Search
operations follow black arrows and insert/delete operations follow
gray arrows. In general, the root of the CAM allocated subtree can
be any node of one B+-tree. If the root of the subtree is the root of
the B+-tree, the TB+-tree-CAM becomes a T-tree-CAM (Figure
13a). If the root of the subtree is one leaf node, TB+-tree-CAM
becomes TB+-tree. If the root of the subtree is an internal node,
TB+-tree-CAM becomes a data structure in between with
moderate search time and lifetime (Figure 13b).

5.6 Discussion
We propose four hybrid data structures in this section. All the
designs are based on a logical tree divided into two parts, the
upper levels and the lower levels. The main idea is to partition the
lower levels and for every search/insert/delete operations, direct
access to one or two of the partitions through the upper levels.
Since at most two partitions are accessed per operation, the write
frequency is reduced for the same number of operation, which
leads to lifetime improvement proportional to the number of
partitions. We can decrease the number of partitions by decreasing
the number of upper levels (an extreme case is MemCAM, in
which the lower levels are implemented with a CAM and the
number of partitions is 1) or increase the number of partitions by
increasing the number of upper levels. Users/Designers can
choose different numbers of partitions to trade between
performance and lifetime based on the requirements of different

Software-­
implemented

T-­tree

Memristor-­
based B+-­trees

B+-­tree 1

B+-­tree 2

B+-­tree 3

B+-­tree 4

B+-­tree h

B+-­tree h-­1

…………………...

…………………...

Figure 11: TB+-tree

Software-­
implemented

T-­tree

Memristor-­
based B+-­trees

B+-­tree 1

B+-­tree 2

B+-­tree 3

B+-­tree 4

B+-­tree h

B+-­tree h-­1

…………………...

…………………...

Pa
rti
tio
n
1

……………

Pa
rti
tio
n
2

Pa
rti
tio
n
3

Pa
rti
tio
n
4

Pa
rti
tio
n
h-­
1

Pa
rti
tio
n
h

Memristor-­
based CAM

Figure 12: TB+-tree-CAM

18 19 20 21

7 8 9 10 29 30 31 32

Software-­
implemented

T-­tree
with T=4

Memristor-­
based B+-­trees
with B=3

5

2 5

0 1 2 3 4 5 6 11 12 13 14 15 16 17 22 23 24 25 26 27 28 33 34 35 36 37 38 39

13 16

16

23 27

27

35 37

37

Memristor-­
based CAM

a) Faster Search / Shorter Lifetime (4 CAM Partitions)

18 19 20 21

7 8 9 10 29 30 31 32

Software-­
implemented

T-­tree
with T=4

Memristor-­
based B+-­trees
with B=3

5

2 5

0 1 2 3 4 5 6 11 12 13 14 15 16 17 22 23 24 25 26 27 28 33 34 35 36 37 38 39

13 16

16

23 27

27

35 37

37

Memristor-­
based CAM

b) Slower Search / Longer Lifetime (8 CAM Partitions)

Figure 13: TB+tree-CAM Tuning Options w/ Support for
Insert & Delete

8

applications or when the endurance of memristors are improved
by future research.

6. Evaluation
We develop an analytic model to evaluate and compare the
average record search time of six data structures, a CMOS-based
T-tree, a memristor-based T-tree, a hybrid Hash-CAM, a hybrid
T-tree-CAM, a hybrid TB+-tree and a hybrid TB+-tree-CAM. All
six data structures have the upper levels stored in a CMOS-based
cache. The CMOS-based T-tree has the lower levels stored in
DRAM. The memristor-based T-tree has the lower levels stored in
a memristor memory and uses conventional loads and stores to
traverse the tree. The four hybrid data structures store the lower
levels in a memristor array with combined compute and storage
and can leverage the internal controller to traverse the trees.

6.1 Energy and Access Feasibility Study
We first evaluate the energy consumption and search time of
MemCAM and then evaluate hybrid storage structures based on
MemCAM performance. Although we anticipate 1011
memristors/cm2 if we build the memristor array on 17-nm-wide
nanowires [17] and 1012 memristors/cm2 with 5nm-scale
memristors [1], we evaluate energy consumption and searching
time of MemCAM based on a conservative design, a memristor
array built on 50-nm-wide nanowires [4] with 50nm x 50nm x
10nm memristors. Memristor density of the evaluated array is 1010
memristors/cm2 and cell density is 109 cells/cm2, which is 100
times denser than CMOS-based CAM.

We use a simplified SPICE model proposed by Mahvash and
Parker [25] to simulate switching time and power consumption of
a single memristor. The simulation results are then used to
calculate the energy consumption and search time of MemCAM.
The energy consumption and search time both depend on step
time (time required to perform a step of operation). Step time
depends on both switching time and RC delay, which can overlap
because switching starts as soon as the voltage across a memristor
goes beyond a threshold voltage (the lowest voltage that can

switch a memristor). Based on the RC delay of 35 nm Cu-Low κ
technology (250 ps for a 1 mm line [1]), methods such as repeater
insertion are required to obtain a < 200ps RC delay for a 1-cm-
long 50-nm-wide line and we can then obtain a 2-ns step time.
The final results show that it is feasible to build a 1Gbit
MemCAM with 1cm x 1cm area. With 50nmx50nm memristors
and K-bit keywords, for MemCAM supporting both point and
range queries, the energy consumption is (0.44+0.82*log2(K))
fJ/bit/search (for each data bit stored in MemCAM) and the search
time is (16+20* log2(K)) ns , and for MemTCAM supporting both
point and range queries, the energy consumption is (0.83+0.82*
log2(K)) fJ/bit/search and the search time is (22+20* log2(K)) ns.

Based on the power consumption of a single memristor, we also
estimate the power density of MemCAM. The power density of
MemCAM is determined based on the power consumed by both
memristors and wires. Previous studies show that wires consume
up to 80% of the power [4]. However, in this experiment, the
number of memristors and the number of wires are similar while
in a 1cm x 1cm MemCAM there are 1010 memristors but only 2 x
105 wires. As a result, the wire power percentage in MemCAM
should be much lower. Furthermore, wire power density can be
reduced by methods that could dramatically reduce the wire
resistance and capacitance [4] since interconnect power is
proportional to the wire capacitance [2,36]. We conservatively
assume that wires consume 50% of the total power, which leads to
a total power density of approximate 55W/cm2 for
MemCAM/MemTCAM supporting only point query and
80W/cm2 for MemCAM/MemTCAM supporting both point and
range queries. We expect similar power density as memristor
feature size scales down, reaching the 1012 memristors/cm2
density. The reason is that there is a linear relationship between
the number of memristors per unit area and the memristor
resistance and the power density depends on the ratio of the
number of memristors per unit area to the memristor resistance.
However, we must wait for experimental demonstrations of high-
density memristor arrays to further analyze the power dissipation.

6.2 Analytic Model
Table 3 shows the parameters we use to develop our analytic
model. We define record nodes as nodes containing pointers to
the records. For the T-tree, all the nodes are record nodes. For the
TB+-tree, all the nodes at upper levels and all the leaves are record
nodes. Given the number of records NR, the order of the T-tree T
(which means that there are at most T records in a T-node), the
order of the B+-tree B (which means that each internal node in the
B+-tree has at least B / 2!" #$ children and at most B children), and

the number of upper levels LevelU, with the assumption of 100%
node utilization (which means that every node has the maximum
number of records) the total number of record nodes in the T-tree

is NT =
NR

T
and and the TB+-tree the number of record nodes

is NTB = 2
LevelU −1+

NR − 2
LevelU −1()×T
B

.

The total number of record nodes in the T-tree (NT) is calculated
by dividing the number of record (NR) by the order of the T-tree
(T). The total number of record nodes in the TB+-tree (NTB) is the
sum of the number of record nodes at the upper levels and the
lower levels, and the number of record nodes at the lower levels is
calculated by dividing the number of record nodes at the lower
levels by the order of the B+-tree (B).

Table 3: Analytic Model Parameters

AvgTimeT Average record search time of the T-tree

AvgTimeTB Average record search time of the TB+-tree

LevelU Number of upper levels

LevelLT Number of lower levels in the T-tree

LevelLTB Number of lower levels in the TB+-tree

LevelLTB’ Number of lower levels in the TB+-tree-CAM

NodeTimeU Time to search a node at upper levels

NodeTimeLT Time to search a node at lower levels in the T-
tree

NodeTimeLTB Time to search a node at lower levels in the
TB+-tree

NT Total number of nodes storing records in the T-
tree

NTB Total number of nodes storing records in the
TB+-tree

NR Total number of records

T Order of the T-tree

B Order of the B+-tree

9

We then determine the number of lower levels in the T-tree (Level

LT) and the TB+-tree (LevelLTB). The number of lower levels in the
T-tree is the difference between the total number of levels in the
T-tree and the given number of upper levels:

LevelLT = log2
NR

T
!

""
#

$$
− LevelU . We assume that all the B+-trees in

the TB+-tree have the same depth and the number of lower levels
in the TB+-tree is equal to that depth, which is the logarithm of the
number of record nodes in a B+-tree to based B, which

produces LevelLTB = logB
NR − 2

LevelU −1()×T
2LevelU

#

$
%
%

&

'
(
(

#

%

%
%

&

(

(
(

.

When we search for a record, we first search for the record node
containing the record and then search within the record node to
find the record. For a record node at an upper level, we just need
to access the upper levels from the root to reach it. For a record
node in a lower level, we must traverse (access) all the upper
levels first and then search the lower levels. The search process in
the lower levels depends on the specific implementation: for
software T-tree, using either CMOS or memristors, we search the
corresponding subtree with the search process similar to the
search process in the upper levels; for Hash-CAM and T-tree-
CAM, we search the corresponding CAM partition with the
comparison and match signal combination described in Section 4;
for TB+-tree, we go down the B+-tree to the leaf level and search
the internal nodes with the comparison and match signal
combination described in Section 4 to decide which subtree has
the input key; for TB+-tree-CAM, we go through a per-defined
number of B+-tree levels and search all the leaves in the
corresponding subtree with the comparison and match signal
combination described in Section 4.

The time required to reach a node at the ith upper level is
i×NodeTimeU where i ∈ Z and i ∈ 1,LevelU[] . The time

required to reach a node at the ith lower level in the T-tree is
LevelU ×NodeTimeU + i×NodeTimeLT where i ∈ Z and
i ∈ 1,LevelLT[] . The time required to reach a node at the ith lower

level in the TB+-tree is
LevelU ×NodeTimeU + LevelLTB ×NodeTimeLTB where i ∈ Z and

i ∈ 1,LevelLTB[] .

We assume a random uniform distribution of keys to search and
define the average record search time as the average time required
to reach the corresponding record node. We also assume that each
record node has the same number of records and calculate the
average record search time by dividing the sum of the time
required to reach each record node by the number of record nodes.

Figure 14 shows how we calculate the average record search time
for each of the five memristor-based data structures. We calculate
the average record search time of a CMOS-based T-tree and a
memristor-based T-tree by changing the value of NodeTimeLT in
AvgTimeT. AvgTimeTB is the average record search time of a
hybrid CMOS-memristor TB+-tree. We also calculate the average
record search time of Hash-CAM (AvgTimeHC), T-tree-CAM
(AvgTimeTC), and TB+-tree-CAM (AvgTimeTBC) based on the
MemCAM search time described in Section 4. The average record
search time of Hash-CAM is the sum of the time to access the
hash table and the time to search a CAM partition. The average
record search time of a T-tree-CAM is the sum of the time to go
through all upper levels in the T-tree and the time to search a
CAM partition. The average record search time of TB+-tree-CAM
is the sum of the time to go through all upper levels in the T-tree,
the time to go through a predefined number of levels in a B+-tree,
and the time to perform CAM-like search operation in a subtree.
We do not consider the records in upper levels when we calculate
the average record search time for these three hybrid storage
structures because most of the records are in lower levels.

6.3 Modeling Results and Analysis
Our evaluation is based on 32MB cache and 128GB DRAM [33].
Based on the densities of DRAM (15Gbit/cm2 [3]) and a
memristor array (1Tbit/cm2 [32]), we assume an 8TB memristor
memory and a 1TB MemCAM. We choose the number of records
in a T-node (T) to be 10 and store 17 levels of T-tree in cache. We
choose the number of records in a B+-tree node (B) to be 80 to
balance between the depth and node utilization rate of the B+-tree.
Table 4 shows the number of records we can store in different
data structures assuming 100% node utilization rate for T-tree and
75% node utilization rate for B+-tree.
For CMOS-related parameters, we use the data from performance
analysis of Intel’s latest processors [21] for NodeTimeU (16ns)
and NodeTimeLC (60ns). For memristor-related paramters, we can
still achieve 1-ns switching time as the scale of memristor goes
from 50nm to 5nm (density going from 10Gbit/cm2 to
1TGbit/cm2) since memristor switching time is proportional to
ROFF/RON. The RC delay of wires increases as memristors scale
down but we can use technologies such as repeater insertion in
order to achieve the same RC delay at 5-nm scale and 50-nm
scale. As a result, we can achieve similar search time at both
scales. It requires one write (to write the key), two reads (one to
read the comparison results, and one to read the address of the

Table 4: Records For Each Data Structure

Data structure Number of records

Software CMOS-based T-tree 5.4 x 109

Memristor-based T-tree 3.4 x 1011

Hash-CAM
6.9 x 1010

T-tree-CAM

TB+-tree
2.8 x 1010

TB+-tree-CAM

AvgTimeT =

{NodeTimeU × LevelU −1()×2LevelU +1#$ %&

+NodeTimeU × LevelU × NT − 2
LevelU +1()

+NodeTimeLT × LevelLT − 2()×2 LevelU+LevelLT −1() + 2LevelU#
$

%
&

+NodeTimeLT × LevelLT × NT − 2
LevelU+LevelLT −1() −1()#

$
%
&} / NT

AvgTimeTB = {NodeTimeU × LevelU −1()×2LevelU +1#$ %&

+NodeTimeU × LevelU × NTB − 2
LevelU +1()

+NodeTimeLTB × LevelLTB × NTB − 2
LevelU +1()} / NTB

AvgTimeHC = HashTime+MemCAMSeachTime

AvgTimeTC = NodeTimeU × LevelU +MemCAMSeachTime

AvgTimeTBC = NodeTimeU × LevelU + NodeTimeLTB × LevelLTB '
+MemCAMSeachTime

Figure 14: Access Time Equations

10

next node), and a comparison to search a node in the TB+-tree. We
use 8-byte keys and 8-byte pointers thus the comparison time is
136ns. We call the time required to perform a read/write operation
to the memristor array from the peripheral circuitry memristor
arrayread/write latency. We need peripheral circuitry to decode
the address, evaluate the data read out (for reads) and decide the
applied voltages based on the data to write (for writes) when we

access the memristor array externally. As a result, the memristor
array read/write latency (which varies from 10ns [22, 29] to 120ns
[28]) is much longer than the step time of 2ns (where the
operations occur inside the memristor array and the applied
voltages are known beforehand). As a result, NodeTimeLM varies
from 166ns to 496ns.
We first choose the number of records (R) to be 109, therefore all
the records can be stored in any of the six data structures, and
compare the performance of the six data structures shown in Table
4. Figure 15 shows the average record search time as we increase
memristor array read/write latency from 10ns to 120ns. We can
see that only Hash-CAM and T-tree-CAM perform better than
memory-based T-trees. The performance of TB+-tree-CAM is
between the performance of CMOS T-tree and Memristor T-tree
and the performance of TB+-tree is worse than both memory-
based T-trees.

We then choose the number of records (R) to be 1010, which
means that the capacity of DRAM is no longer high enough to
store all the records. Figure 16 shows the average record search
time as we increase memristor array read/write latency from 10ns
to 120ns. We do not show the performance of software/CMOS +
DRAM in Figure 16 since it requires disk accesses for this data
size and the average record search time increases to milliseconds.
We can see from Figure 16 that Hash-CAM and T-tree-CAM still
perform better than memristor-based T-tree. TB+-tree still
performs worse than memristor-based T-tree but the performance
gap decreases as memristor array read/write latency increases.
TB+-tree-CAM outperforms memristor-based T-tree as long as
memristor array read/write latency is longer than 40ns. In general,
TB+-tree and TB+-tree-CAM perform better than when R is 109.
The reason is that when R is 109, the node utilization rate of B+-
trees is low, which means that we cannot benefit from the
shallowness of B+-trees.

We then change the number of records from 109 to 1020 to see
how data size affects performance of the six data structures. From
Figure 16 we can see that memristor-based T-tree has better
performance when memristor array read/write latency is lower, so
we choose memristor array read/write latency to be 10ns to have
the best possible performance of memristor-based T-tree. The
results are shown in Figure 17. We can see that the search time of
CMOS-based T-tree, memristor-based T-tree, and TB+-tree
increase as the number of records increases. The search time of
Hash-CAM, T-tree-CAM, and TB+-tree-CAM remain almost the
same. When the number of records goes beyond 1016, TB+-tree-
CAM outperforms memristor-based T-tree.

We also calculate the theoretical maximum lifetime of the four
hybrid data structures assuming continuous search operations,
which is shown in Table 5. Generally, lifetime increases as search
time increases, since increased search time results in reduced
write frequency. The exception here is T-tree-CAM, whose
lifetime is limited by the capacity of cache. However, we can see
that even in the worst case we can achieve a one-year lifetime. If
we take into account the time required to read out the matched
records, the lifetime will be even longer.

Figure 15: Performance of various data structures vs.

memristor latency (number or records, R, = 109)

Figure 16: Performance of various data structures vs.

memristor latency (number or records, R, = 1010)

Figure 17: Search Time vs. number of records

11

From the above analysis, we observe that reducing memristor
external read/write latency below 40ns and if the number of
records is smaller than 1016 then memristor-based T-tree is the
best data structure for search applications. Otherwise, TB+-tree-
CAM performs better through combined compute and storage and
has an acceptable lifetime.

7. Related Work
A memristor-based crossbar memory system has been
demonstrated by HP Labs [35]. Strategies and peripheral circuitry
have been designed to write into and read from a memristor array.
The memristor memory demonstrates much higher density and
access time comparable to CMOS RAMs. A hybrid CMOS-
memristor CAM has also been proposed to achieve larger capacity
[11]. However, combining CMOS transistors with memristors
reduces bit density and increases manufacturing difficulty.

Recently several researchers have explored spin-based devices for
both storage and computing [15, 16, 27]. In STT-MRAM [16],
one CMOS transitor and one magnetic tunnel junction (MTJ) are
combined to build a cell. In MTJ-based logic units [26], MTJs are
used to perform logic operations on data stored in other MTJs.
Our work focuses on memristor technology with wear out
constraints. Exploring more general configurable accelerators
with different technologies is an interesting area of future work.

Other emerging memory technologies with endurance problems
include PCM (Phase Changing Memory). Recent work proposes
new B+-tree algorithms for PCM to improve performance and
reduce writes [7]. They design unsorted node organizations to
reduce the number of writes incurred during insert and delete
operations. Their results show that an approach where only the
leaves are unsorted performs better than when all the nodes are
unsorted. The reason is that it requires linear time to search within
a node in PCM. However, with the computation ability of
memristors, we can perform simultaneous comparisons and
reduce search time within a node, which makes the unsorted
scheme a better choice for in-place computing technologies.

Extensive research has been performed on processing-in-memory
(PIM) to improve performance by combining processing units and
memory [10, 14, 24, 26]. Terasys [14] augments a standard 4-bit
memory with a single-bit ALU controlling each column of
memory. In DAAM (Dynamic Associative Access Memory) [24]
a large number of small processing elements are put in a DRAM’s
sense amps. DIVA [10] incorporates multiple PIM chips to a
conventional microprocessor. Smart Memories [26] has multiple
processing tiles which can be configured based on the
requirements of applications. The main idea of PIM is to combine
compute and storage, similar to our proposed data structures.

Recent research [23] “disaggregated” memory to expand and
share memory across servers. With memory capacity increase, we
are able to store more data and obtain more benefits from our
hybrid data structures. Furthermore, by performing in-place
computation the disaggregated memory could serve as an
application appliance rather than simply memory.

8. Conclusion
Memristors are an emerging technology with potential to provide
high-density storage augmented with in-place computing through
implication logic. In this paper we explore this combined storage
compute as a method to accelerate point and range search queries,
which serve as specific instances of more general configurable
accelerators. We first show how to use implication logic to create
a configurable CAM that can support both point and range

queries; however, low endurance of memristors limits the benefit
we can obtain from these storage structures. To more fully utilize
the computation ability of memristors and overcome the
endurance problem, we introduce novel data structures for use
with memristor-based storage+compute structures.

We first propose MemCAM, a configurable memristor-based
CAM design. The computation ability of memristors makes it
possible to perform range search using MemCAM while the high
density of memristors provides an opportunity to build CAMs
with large capacity and small area. We use SPICE to model
memristor power and performance. With 50nmx50nm memristors
and a K-bit search word, for a MemCAM supporting both point
and range queries, the energy consumption is (0.44+0.82*
log2(K)) fJ/bit/search and the search time is (16+20*log2(K)) ns ,
and for MemTCAM supporting both point and range queries, the
energy consumption is (0.83+0.82* log2(K)) fJ/bit/search and the
search time is (22+20* log2(K)) ns.

We then propose a series of configurable hybrid data structures
using both conventional CMOS cache hierarchies and memristor
technologies to solve the endurance problem. These data
structures can be reconfigured to trade between performance and
lifetime and to adapt to future memristors with improved
endurance. We use an analytic model to calculate and compare the
performance and lifetime of two memory-based T-trees and four
hybrid data structures. The results show that hybrid data structures
can utilize MemCAM search abilities and improve lifetime from
seconds to years. Furthermore, TB+-tree-CAM, a hybrid CMOS-
memristor data structure combining T-tree, B+-tree and CAM,
manages to balance between performance and lifetime and can
outperform other data structures when taking both performance
and lifetime into consideration.

9. Acknowledgements
Thanks to those that funded and contributed.

10. References
[1] "Interconnect Report. International Technology Roadmap for

Semiconductors (ITRS)," 2009.

[2] D. Agrawal, S. Das, and A. El Abbadi, "Big data and cloud
computing: current state and future opportunities," in
Proceedings of the Proceedings of the 14th International
Conference on Extending Database Technology, pp. 530-
533, 03/21/2011, 2012.

[3] S. I. Association, "International Technology Roadmap for
Semiconductors," 2010.

[4] J. Borghetti, et al., "Memristive switches enable stateful logic
operations via material implication," Nature, vol. 464 (7290),
pp. 873-876, 2010.

[5] S. Borkar and A. A. Chien, "The future of microprocessors,"
Commun. ACM, vol. 54 (5), pp. 67-77, 2011.

Table 5: Theoretical maximum lifetime of four hybrid data
structures (Taccess: memristor array read/write latency)

Data structure
Lifetime (years)

Taccess=10ns Taccess=60ns Taccess=120ns

Hash-CAM 2.4 3.9 5.7

T-tree-CAM 0.8 1.0 1.2

TB+-tree 88.6 139.5 200.7

TB+-tree-CAM 68.2 96.6 130.6

12

[6] F. Chang, et al., "Bigtable: a distributed storage system for
structured data," in Proceedings of the in Proceedings of the
7th Conference on USENIX Symposium on Operating
Systems Design and Implementation, 2006.

[7] S. Chen, P. B. Gibbons, and S. Nath, "Rethinking database
algorithms for phase change memory," in Proceedings of the
in Proceedings of the 5th Biennial Conference on Innovative
Data System Research (CIDR '11), 2011.

[8] L. O. Chua, "Memristor - the missing circuit element," IEEE
Transactions on Circuit Theory, vol. CT-18 (5), pp. 507-519,
1971.

[9] G. S. S. D. R. S. Dmitri B. Strukov and R. S. Williams, "The
missing memristor found," Nature, vol. 453, pp. 4, 2008.

[10] J. Draper, et al., "The architecture of the Diva processing-in-
memory chips," in Proceedings of the in Proceedings of the
16th International Conference on Supercomputing. New
York, USA: ACM, 2002, pp. 14-25, 2002.

[11] K. Eshraghian, et al., "Memristor MOS content addressable
memory (MCAM): hybrid architecture for future high
performance search engines," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. PP (99), 2010.

[12] H. Esmaeilzadeh, et al., "Dark silicon and the end of
multicore scaling," in Proceedings of the 38th annual
international symposium on Computer architecture. San
Jose, California, USA: ACM, 2011, pp. 365-376.

[13] H. Franke, et al., "Introduction to the Wire-Speed Processor
and Architecture," IBM J. Res. Dev., vol. 54 (1), pp. 27-37,
2010.

[14] M. Gokhale, B. Holmes, and K. Iobst, "Processing in
memory: the Terasys massively parallel PIM array,"
Computer, vol. Volume 28(4), pp. 23-31, 1995.

[15] Q. Guo, et al., "A Resistive TCAM Accelerator for Data-
Intensive Computing." International Symposim on
Microarchitecture (MICRO '11), 2011.

[16] X. Guo, E. Ipek, and T. Soyata, "Resistive computation:
avoiding the power wall with low-leakage, STT-MRAM
based computing," in Proceedings of the 37th annual
international symposium on Computer architecture. Saint-
Malo, France: ACM, 2010, pp. 371-382.

[17] G.-Y. Jung, et al., "Circuit fabrication at 17 nm half-pitch by
nanoimprint lithography," Nano Letters, vol. 6 (3), pp. 351-
354, 2006.

[18] P. J. Kuekes, "Material implication: digital logic with
memristors," Memristor and Memristive Systems Symposium,
2008.

[19] S. Kvatinsky, et al., "Memristor-based IMPLY logic design
procedure," in Proceedings of the Proceedings of the 2011
IEEE 29th International Conference on Computer Design,
pp. 142-147, 10/09/2011, 2011.

[20] T. J. Lehman and M. J. Carey, "A study of index structures
for main memory database management systems," in
Proceedings of the in Proceedings of the 12th International
Conference on Very Large Data Bases (VLDB '86), 1986.

[21] D. Levinthal, "Performance analysis guide for Intel®
CoreTM i7 processor and Intel® XeonTM 5500 processors."

[22] D. L. Lewis and H.-H. S. Lee, "Architectural evaluation of
3D stacked RRAM caches," in Proceedings of the in

Proceedings of IEEE International 3D System Integration
Conference, 2009.

[23] K. Lim, et al., "Disaggregated memory for expansion and
sharing in Blade servers," in Proceedings of the in
Proceedings of the 36th annual International Symposium on
Computer Architecture (ISCA '09), 2009.

[24] K. L. Liu, G. J. Lipovski, and C. Yu, "The dynamic
associative access memory chip and its application to SIMD
processing and full-text database retrieval," in Proceedings of
the in Proceedings of the 1999 IEEE International Workshop
on Memory Technology, Design, and Testing: IEEE
Computer Society, 1999.

[25] M. Mahvash and A. C. Parker, "A memristor SPICE model
for designing memristor circuits," in the 2010 53rd IEEE
International Midwest Symposium on Circuits and Systems
(MWSCAS), 2010.

[26] K. Mai, et al., "Smart Memories: a Modular Reconfigurable
Architecture," in Proceedings of the 27th Annual
International Symposium on Computer Architecture, pp. 161-
171, 2000.

[27] S. Patil and D. J. Lilja, "Performing bitwise logic operations
in cache using spintronics-based magnetic tunnel junctions,"
in Proceedings of the Proceedings of the 8th ACM
International Conference on Computing Frontiers, pp. 33,
05/03/2011, 2011.

[28] P. Ranganathan, "From microprocessors to nanostores:
rethinking data-centric systems," Computer, vol. 44 (1),
2011.

[29] W. Robinett, et al., "A memristor-based nonvolatile latch
circuit," Nanotechnology 21(2010) 235203, 2010.

[30] G. S. Snider, "Molecular Wire Content Addressable
Memory," vol. US 6952358 B2, U. S. P. Office, Ed.:
Hewlett-Packard Development Company, L.P., 2005.

[31] H. S. Stone, "An efficient parallel algorithm for the solution
of a tridiagonal linear system of equations," Journal of the
Association for Computing Machinery, vol. 20 (1), pp. 27-38,
1973.

[32] D. B. Strukov and R. S. Williams, "Four-dimensional address
topology for circuits with stacked multilayer crossbar
arrays," in Proceedings of the in Proceedings of the National
Academy of Science, pp. 20155-20158, 2009.

[33] C. A. Van Eysden and J. E. Sader, "Frequency Response of
Cantilever Beams Immersed in Viscous Fluids with
applications to the atomic force microscope: Arbitrary mode
order," Journal of Applied Physics, vol. 101 (4 044908
ARTN 044908), pp. -, 2007.

[34] G. Venkatesh, et al., "Conservation cores: reducing the
energy of mature computations," in Proceedings of the
fifteenth edition of ASPLOS on Architectural support for
programming languages and operating systems. Pittsburgh,
Pennsylvania, USA: ACM, 2010, pp. 205-218.

[35] P. O. Vontobel, et al., "Writing to and reading from a nano-
scale crossbar memory based on memristors,"
Nanotechnology, vol. 20, 2009.

[36] J. J. Yang, et al., "High switching endurance in TaOx
memristive devices," Applied Physics Letters, vol. Volume
97 (Issue 23), 2010.

