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Abstract
Trends in increasing web traffic demand an increase in server
throughput while preserving energy efficiency and total cost
of ownership. Present work in optimizing data center effi-
ciency primarily focuses on the data center as a whole, using
off-the-shelf hardware for individual servers. Server capac-
ity is typically increased by adding more machines, which is
cheap, though inefficient in the long run in terms of energy
and area.

Our work builds on the observation that server workload
execution patterns are not completely unique across multi-
ple requests. We present a framework—called Rhythm—for
high throughput servers that can exploit similarity across
requests to improve server performance and power/energy
efficiency by launching data parallel executions for re-
quest cohorts. An implementation of the SPECWeb Bank-
ing workload using Rhythm on NVIDIA GPUs provides a
basis for evaluating both software and hardware for future
cohort-based servers. Our evaluation of Rhythm on future
server platforms shows that it achieves 4× the throughput
(reqs/sec) of a core i7 at efficiencies (reqs/Joule) compara-
ble to a dual core ARM Cortex A9. A Rhythm implemen-
tation that generates transposed responses achieves 8× the
i7 throughput while processing 2.5× more requests/Joule
compared to the A9.
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1. Introduction
Data centers provide the computational and storage infras-
tructure required to meet today’s ever increasing demand
for Internet content. For example, Facebook utilizes more
than 100,000 servers to provide approximately one trillion
page views per month (about 350K per second) and 1.2
million photo views per second. Meeting the increasing de-
mand for content often requires adding more machines to
existing data centers and building more data centers. Al-
though content distribution networks can offload some of
the demand for static content, state-of-the-art data centers
house vast numbers of servers and require 2-6 Mega Watts
of power. Therefore server performance, scaling and energy
efficiency (throughput/Watt) are crucial factors in reducing
total cost of ownership (TCO) in today’s server-based indus-
tries [4, 11, 16, 17, 39, 41].

For example, at Facebook, the majority of the traffic
goes through front-end web servers and the majority of
the data center servers (and thus power) are devoted to this
front-end [25]. Reducing CPU load inspired the design of
HipHop, which translates PHP to native code thereby in-
creasing throughput per server by > 5× [15].

Current system designs based on commodity multicore
processors may not be the most power/energy efficient for all
server workloads. There is ongoing debate over which archi-
tecture is best suited for specific workloads [17, 31, 32, 39,
43]. Figure 1 shows an overview of the server design space
based on throughput normalized to an x86 core versus en-
ergy efficiency (performance/Watt) normalized to an ARM
core. An ideal design would achieve throughput at or above
an x86 core with energy efficiency at or above an ARM core.



Figure 1. Server Design Space

Recent highly-threaded accelerators (i.e., NVIDIA Ke-
pler [44], Intel Xeon Phi [30]) achieve >1 teraflop of per-
formance within a 225W power envelope, achieving >5
gigaflops/W. This efficiency arises from several factors,
including the amortization of overheads (e.g., instruction
fetch) due to extensive use of vector (SIMD) and multi-
threaded (SIMT) hardware, and simpler designs enabled
by supporting a more restricted programming model; these
accelerators excel at executing regular data-parallel pro-
grams, but are often considered unsuitable for arbitrary
multi-threaded applications.

Nonetheless, as GPU-like hardware becomes increas-
ingly general purpose, the potential advantages of highly-
threaded, yet somewhat restricted hardware, are compelling.
Even servers based on low power cores (e.g., ARM, Atom)
could further benefit from amortizing microarchitecture
power overheads (e.g., instruction fetch) over multiple re-
quests, or utilizing heterogeneous System-on-Chip solu-
tions (e.g., Tegra [45], AMD Fusion [8], or many core sys-
tems [35]) for servers. The challenge is to determine if tra-
ditional task parallel request-based server workloads can
exploit the efficiencies of highly threaded data-parallel hard-
ware in future server platforms.

This paper takes the first steps toward meeting this chal-
lenge by building on several observations about technology
trends and server workloads. In a typical data center server
environment, requests may be distributed to a set of servers
based on information within the request (e.g., based on a
hash of the user ID, URL), on the type of service requested
(e.g., login, static image, database query), or other sharding
methods. In this scenario, many of the requests perform the
same task(s), such as login or search query. The key insight
is, given an incoming stream of requests, a server could de-
lay some requests in order to align the execution of similar
requests—allowing them to execute concurrently. Our goal
is to trade an increase in response time for improvement in
server throughput per Watt by exploiting similarity across
requests using cohort scheduling [34] to launch data parallel
executions.

The contributions of this work include:

• Rhythm, a software architecture for high throughput
SIMT-based servers. (Rhythm derives from the Greek
word rhythmos, meaning any regular recurring motion or
symmetry)

• A prototype implementation of Rhythm and the SPECWeb
Banking service on NVIDIA GPUs that demonstrates it
is possible to run server workloads on a GPU.1

• Evaluation of future server platform architectures. Our
prototype achieves 1.5M requests/sec on an NVIDIA
GTX Titan GPU card for an idealized environment that
removes network and storage I/O limitations. This is 4×
the throughput of a Core i7 running 8 threads at efficien-
cies comparable to a dual core ARM Cortex A9. Further-
more, approximately 192 1.2GHz, 1W ARM cores are
required to achieve the same throughput with less than
40 Watts (21% overall) in available power to support the
massively scaled system. We also demonstrate that array
transpose offload can increase Rhythm throughput to over
3M reqs/sec.

• Standalone C and C+CUDA implementations of the
SPECWeb2009 Banking workload that we plan to re-
lease publicly.

The remainder of this paper is organized as follows. Sec-
tion 2 examines technology trends and workload character-
istics that motivate our work. We present our overall server
architecture (Rhythm) in Section 3 and provide implemen-
tation details in Section 4. Sections 5 and 6 describe our
methodology and evaluates our prototype’s potential perfor-
mance on future server platforms. Related work is discussed
in Section 7, while Section 8 concludes and discusses future
work.

2. Motivation
This section motivates our work by first reviewing GPU-
style accelerator efficiencies and then discussing several net-
working and system architecture trends that remove con-
straints of existing systems. We conclude this section with
a study that demonstrates the existence of similarity across
requests.

2.1 Accelerator Efficiency
GPU-style accelerators achieve efficiency through two pri-
mary mechanisms: hardware multithreading and SIMD exe-
cution. First, for high throughput computing, hardware mul-
tithreading enables significant latency tolerance by overlap-
ping the execution of multiple threads. Second, by utilizing
a single instruction multiple thread (SIMT) model, properly
aligned threads exploit data parallel execution and amortize
instruction fetch and decode overhead. Recent research in-
dicates instruction fetch and decode can be as high as 40%-

1 Our initial prototype targets GPUs, but our ideas are applicable to a broad
class of accelerators. Without loss of generality, we use GPU or device to
refer to this broad class.



50% of overall core power [49]. Amortizing this power over
more operations can provide benefits across nearly all types
of microarchitectures, from complex out-of-order cores to
simple in-order cores. Although in this paper we focus on
GPU-style accelerators, our work is broadly applicable to
data parallel architectures.

The potential efficiencies available with emerging GPU-
style accelerators is compelling. However, several aspects of
current systems may limit the ability to exploit these effi-
ciences. These limitations include PCIe bandwidth and la-
tency, network bandwidth and the potential lack of similar-
ity across requests. Below we address these potential limita-
tions.

2.2 Enabling Trends
Current systems may introduce bottlenecks that limit the
overall server throughput possible with a highly threaded
accelerator. Here we identify three trends that can remove
or mitigate these bottlenecks enabling scale-up solutions for
high throughput servers.

2.2.1 Increasing Bandwidth
Current systems may have bandwidth bottlenecks at either
the network or the PCIe bus that limit overall throughput. To-
day’s systems utilize 10 Gbps - 40 Gbps networking infras-
tructure and PCIe 3.0 for the system interconnect. A single
10 Gbps link limits throughput to approximately 1M req/sec
for 1KB requests, and is lower for larger messages. How-
ever, efforts are underway to create 100 Gbps and 400 Gbps
network standards [1] and announced systems claim to sus-
tain these bandwidths [29]. Furthermore, research is explor-
ing techniques to achieve 1012 bps to 1015 bps using novel
multicore fiber optics [47].

Once network bandwidth increases, the PCIe bus may be-
come the bottleneck. Fortunately, PCIe 4.0 doubles band-
width to 16G Transfers/sec [3] and as discussed below, sys-
tem on chip architectural changes can eliminate/reduce sys-
tem bus bandwidth limitations. We believe that future server
platforms can exploit these progressive enhancements in net-
work and system bandwidth to sustain significant throughput
per node.

2.2.2 System on Chip
Another trend in processor and system architecture is hetero-
geneous computing where specialized accelerators and gen-
eral purpose cores are combined in a system-on-chip (SoC)
design (e.g., Tegra [45], AMD Fusion [8]). SoCs can reduce
latency, improve bandwidth and reduce power by avoid-
ing off-chip latency and exploiting on-chip density for a
high bandwidth interconnect. Recent analysis [35, 36] shows
overall benefits to data center design by using SoC architec-
tures to reduce TCO, and mention the possibility of inte-
grated accelerators for servers.

2.2.3 Operating System and Backend Services
A final enabling trend is support for high throughput ac-
cess to OS services. Recent research is exploring both high
throughput and clean abstractions for parallel access to OS
services. GPUfs [50] provides a filesystem abstraction that
enables access from the GPU. Similar in spirit is the re-
cent development of vector interfaces [55] that can provide
1M input/output operations per second to a high perfor-
mance solid state disk (SSD). There is also recent work on
providing high throughput backend services by exploiting
GPUs [6, 28, 57] or constructing specialized hardware for
key-value (e.g., memcached [19]) servers [10, 36].

2.3 Request Similarity
The potential efficiencies of parallel accelerators is com-
pelling, and the above trends expose the opportunity to ex-
ploit those efficiences in future high throughput server de-
signs. However, it remains to be determined if server work-
loads can exploit those efficiencies. As a first step toward
answering this question we performed preliminary analysis
of the SPECWeb2009 Banking workload [51]. This work-
load is a PHP web site representative of typical web-based
banking.

We use Pin [40] to obtain x86 dynamic basic block traces
for 61 individual dynamic web content (PHP) requests from
the SPECWeb2009 Banking workload. These requests ac-
cess 14 distinct top-level PHP files served by the Apache
web server.2 We use the UNIX utility diff to merge traces and
obtain a measure of similarity between request traces based
on the length of the merged trace. Minimal differences be-
tween traces indicates the two executions followed the same
control paths during their execution.

The opportunity for exploiting GPU-style hardware for
server workloads is obtained by examining the length of
merged traces (e.g., shorter merged traces implies faster
execution time). The resulting merge is an approximation
of the actual execution order for all the batched requests
executing on data parallel hardware. Note that our analysis
is performed offline, and thus assumes a very high request
arrival rate.

We merge traces for independent requests that access the
same initial PHP file, resulting in 14 distinct merged traces.
Execution speedup is approximated as the sum of traces
(in number of basic blocks) divided by the merged trace
size (i.e., cohort execution on idealized SIMD hardware). In
our experiments between 2 and 6 traces per request (PHP
file) are merged, with most requests having 5 unique traces.
Figure 2 shows per request speedup normalized to ideal
(linear) speedup. From these results we observe nearly linear
speedup (i.e., nearly identical executions) for each request
type.

2 There are a total of 16 requests in this workload, but our experiments only
exercised 14 of them.



Figure 2. Potential Speedup of SPECWeb2009 Banking
Workload on Data Parallel Hardware Relative to Ideal
Speedup

We performed a similar study using Facebook’s HipHop
PHP to C++ system [15]. This experiment removes any po-
tential affects of online PHP interpreting in Apache/Zend.
We observed qualitatively similar results (not shown) with
significant similarity among requests of the same type. Fur-
thermore, on average there are approximately 33,000 in-
structions between system calls with 97% of them related to
filesystem or network I/O and could utilize the high through-
put interfaces described above (i.e., GPUfs and vector inter-
faces).

The above results quantitatively demonstrate the intuitive
result that similar instruction control flow exists in a server
workload for requests of the same type. Similar control flow
is just one aspect required to efficiently utilize GPU-style
compute accelerators. Other additional challenges include,
but are not limited to: 1) scheduling, 2) data divergence, 3)
copy overheads, and 4) current platform limitations.

3. Rhythm Server Software Architecture
Rhythm is a software architecture that extends event-based
staged servers and cohort scheduling [34, 52, 56] to sup-
port high throughput servers on emerging highly threaded
data parallel accelerators. Conceptually, Rhythm pipelines
the processing of request cohorts—a set of requests that re-
quire similar computation. In this section we first provide an
overview of the Rhythm design, including our core design
goals. This is followed by a more detailed description of the
Rhythm pipeline and the requisite data structures. Rhythm is
a general architecture that could be implemented in many
ways; Section 4 describes a specific implementation. Fur-
thermore, Rhythm can be used to implement a variety of ser-
vices, but in this work we focus on its use for web servers.

3.1 Overview
Figure 3 shows the typical pattern for processing requests
in web servers. Requests arrive over the network and are
dispatched for processing, generally based on the type of
request (e.g., a particular PHP file or query type). Request

Figure 3. Typical Web Server Request Processing
Overview

processing may be followed by access to a backend database
(e.g., SQL or memcached), and the results from that query
can lead to further processing before a response is sent
back to the client. Conventional servers process requests
individually, using a thread per request [18] or a staged
event-based server [34, 52, 56].

Figure 4. Rhythm Pipeline (Each stage can have multiple
instances)

Rhythm extends event-based staged servers by providing
a pipelined architecture for processing cohorts of requests
on data parallel hardware. The Rhythm pipeline is composed
of five stages, as shown in Figure 4: 1) Reader, 2) Parser, 3)
Dispatch, 4) Process, 5) Response. For each of these stages
there may be one or more instances, allowing for parallelism
across and within stages. For a given service, the process
stage is composed of n backend stages and n + 1 process
stages. A specific implementation of the Rhythm pipeline can
map each of these stages to either a general purpose CPU
or an SIMT accelerator. We defer discussion of a specific
implementation to Section 4.

The overall goal of Rhythm is to enable high throughput
server implementations that can exploit the efficiencies of
GPU-style accelerators. To achieve this, our design goals
for Rhythm include: 1) Asynchronous, 2) Event driven, 3)
Lock free & wait free, and 4) Utilize the most efficient com-
putational resource (general purpose core or accelerator).
The first three guidelines are well-known for high through-
put server design on commodity general purpose processors
(e.g., nginx [52]). The last design guideline is unique to an
accelerator-based design and reflects our desire to exploit the
efficiency of the accelerator as much as possible, but some
requests that do not conform to a data parallel model may be
executed more efficiently on a general purpose CPU.

The Rhythm pipeline is controlled by an event-based
server with a single thread (see Figure 5) that provides cohort
scheduling [34]. The server thread is generally responsible
for delaying requests an appropriate amount of time to form



Figure 5. Rhythm Event-based Server: Each Finite State
Machine (FSM) is associated with a cohort of requests.

cohorts, determining when a cohort is ready to launch on the
accelerator, launching cohorts onto the accelerator, manag-
ing cohort context transitions, and sending responses back
to the originating clients.

Requests can be delayed for a limited amount of time
and still achieve acceptable response times [41]. Rhythm in-
cludes a timeout so that requests are not delayed indefinitely
during cohort formation. Setting a specific timeout value is
a policy decision that depends on particular service level
agreements, Rhythm simply provides the mechanism. A sim-
ilar timeout mechanism could be used to ensure that strag-
glers (e.g., long backend accesses) do not delay other re-
quests in a cohort during execution. Furthermore, since co-
hort formation can occur after each stage, the set of requests
in a cohort may change. Straggler responses from the back-
end can either be executed on the host CPU or added to a
subsequent cohort.

The Rhythm pipeline stalls only when insufficient re-
sources are available (i.e., structural hazards such as mem-
ory buffers or device execution units). The single threaded
control avoids thread switching overheads, is lock-free, wait-
free and fully asynchronous. The design also allows for mul-
tiple instances of each stage (reader, parser, process and re-
sponse) and each of the stages can be tuned for optimal con-
currency. Rhythm maintains state that allows it to efficiently
schedule cohorts on the host or the accelerator based on the
current state of the system.

Cohort Management A cohort context contains informa-
tion necessary to identify the specific request type and other
properties of a cohort. Rhythm uses a cohort pool to track the
availability of cohort contexts and manages their allocation
throughout the pipeline. A cohort context can be Free, Par-
tially Full, Full or Busy. A Free context can be used to form
a new cohort. Requests are added to a context by either the
Reader or the Parser. The first request added to a Free cohort
context transitions the context to Partially Full where it can
continue to accumulate requests until it becomes Full. When
a cohort context begins execution, either because it was Full
or a timeout occurred, it becomes Busy. A cohort context is
Busy while the requests transition through the various pro-
cess stages. A cohort context is Freed after the responses are
sent to their respective clients.

3.2 The Rhythm Pipeline
We now elaborate more on the design and function of the
individual stages of the Rhythm pipeline. An implementation
would provide resources (execution units and memory) to
support one or more instances of each stage.

Reader The reader accumulates requests from the network
to form a cohort, based purely on the request order. When a
sufficient number of requests arrive, the reader passes the
cohort to the next stage of the pipeline—the parser. The
reader latency is primarily limited by the request arrival rate
or network bandwidth. If all parsers are busy, the reader
stalls.

Parser Request parsing follows a standard protocol de-
fined by the HTTP Specification [20], making it an ideal can-
didate for SIMT execution. The parser extracts the method
(GET or POST), the request type (PHP file or image), the
content length, cookie information, the client file descriptors
and the query string parameters for each request in the co-
hort. This information is then composed into a request struc-
ture and added to the cohort. Cohorts are formed based on
the file accessed or any other metric of similarity. The parser
then signals dispatch if a cohort becomes Full.

Dispatch Dispatch is performed on the host and deter-
mines if a request should be executed on the host or the de-
vice. Some requests that simply access the file system are
best processed on the host rather than the device. GPU ac-
cess to the file system (e.g., GPUfs [50]) would enable dis-
patch execution on the device and decrease transfer over-
heads, but we leave exploring this option to future work. A
Full cohort context is ready for dispatch if the requisite re-
sources on the device are available. Based on the resource
requested (e.g., specific PHP file), the appropriate process
stage is executed and the cohort context is updated to Busy
to prevent redundant dispatch.

Process The process phase is defined by the different re-
quest types supported by the server and is generally com-
posed of n backend stages and n + 1 process stages. Typ-
ically, a web service response contains the HTTP header,
static HTML content, database content, and dynamic HTML
generated based on the database content. The overall process
phase alternates between content generation and backend ac-
cess. For a typical remote backend, individual threads in a
given process stage generate request strings which are sent
to the backend, and the backend response is then passed on
to the next stage of content generation (i.e., another process
stage). We note that it is easy to incorporate a portion of the
backend, such as a cache lookup, as part of a process stage.
When the response is ready, an event is raised to signal pro-
cess completion.

Response The response stage sends the responses to the
respective clients and frees the associated cohort context. Its
latency is primarily limited by available network bandwidth.



The Rhythm pipeline is general and could be implemented
entirely on a single machine or distributed across several ma-
chines. For example, read and parse could be implemented
on a front-end machine, processing of specific request types
on separate machines, and response formation on yet another
machine. The next section presents an implementation on a
single machine; we leave exploring alternative implementa-
tions as future work.

4. Rhythm Server Implementation
We implement a prototype version of Rhythm to evaluate its
potential on existing NVIDIA GPU hardware. We apply sev-
eral implementation specific optimizations to the Rhythm de-
sign. Many of these optimizations are well known software
constructions and Rhythm exploits them for its goals of max-
imum throughput on accelerator hardware.

4.1 Pipeline Control
Event loop Rhythm is single threaded by design, therefore
it uses a central event loop based on epoll to process all I/O
events and device interactions. These include requests for
new connections, backend responses, service requests for ex-
isting clients, and file system responses. Asynchronous stage
execution (i.e., transitions in the cohort FSM) is managed us-
ing callbacks and local unix pipes. Callbacks are maintained
as a linked list that is traversed on each iteration of the event
loop.

Callbacks We use callbacks to track stage completion and
transitions. The pipeline stages execute asynchronously on
the device, and we need a mechanism to detect completion.
Unfortunately, our current platform does not support inter-
rupts from the device, therefore we use callbacks to imple-
ment a polling mechanism in the event loop. At the begin-
ning of each stage, a callback is added to the callback list.
We execute this callback to poll the stage and only remove
it from the list if the stage is complete. When a stage com-
pletes, it adds another callback to start execution of the next
stage in the pipeline. Although this approach doesn’t appear
to limit throughput, it introduces unnecessary power con-
sumption for polling many inflight stages.

Cohort context synchronization Our current implemen-
tation uses the host for cohort dispatch, and thus requires
maintaining cohort context on both the host and the device.
We synchronize these two copies of the context at the parser
since it is the only stage that modifies device contexts (set-
ting them to Partially Full and Full) by populating cohorts
with requests. The host contexts are copied to the device at
parser launch, and the device contexts are copied to the host
at parser termination for use in dispatch. Dispatch and re-
sponse both execute on the host and modify the host cohort
context by setting it to Busy or Free, respectively.

4.2 Pipeline Stages
Reader/Parser The reader is double buffered to overlap re-
quest processing and accumulation. When a cohort becomes
full, the reader swaps the front and back buffers, signals
the parser to begin processing, and resumes reading requests
into the new front buffer. If the back buffer is not free, the
reader stalls, waiting for the parser. The reader and parser are
low latency stages, and a single instance of each is sufficient
to achieve high throughput in our experiments.

Process/Backend The overall processing of a request is di-
vided into one or more process stages separated by back-
end accesses. In our current implementation we preallocate
pipeline resources (i.e., memory) for all process stages (in-
cluding the backend when appropriate) and the response
stage at the first process stage launch. Each stage is a compu-
tational unit on the device, called a kernel. Kernel progress
and termination is tracked by the event loop. The overall
process phase is latency bound depending on the specific
request type. We provide multiple instances of process and
response resources to maintain as many cohorts in flight as
possible, allowing us to hide the latency of individual ker-
nels and increase throughput. Exploring alternatives that do
not preallocate resources is part of our future work.

Response The final process stage adds a callback upon
termination, and the response stage is invoked at the next
iteration of the event loop. The callback is removed after the
responses for the cohort are sent to the respective clients. All
resources used by this cohort become available for reuse by
subsequent cohorts.

4.3 Data Structures
Rhythm uses four primary data structures to support the web
server: a cohort pool and the associated cohort contexts, a
session array, a request buffer and a response buffer, each
optimized to enable efficient data parallel execution. The
cohort pool and contexts are implemented as static arrays
to avoid allocation and synchronization overheads.

4.3.1 HTTP Session Array/Cookies
The session array is a device only structure that stores HTTP
session state for the clients handled by the server. Sessions
are created at login and destroyed upon logout. Since the
session array is accessed for every request, its performance
is critical to server throughput. To ensure conflict-free access
for a cohort, the session array is implemented as a hash table
with the number of buckets equal to the cohort size. Each
request thread accesses a unique bucket, and insertion into a
bucket is performed randomly based on a hash of the userid.
The session identifier is a hash of the node index and the
bucket index, ensuring O(1) time lookup for a session node.
Collisions upon insertion are handled using a linear search
for a free node, resulting in O(1) for collision free insertion,
and O(n) time in the case of a collision. Since lookups are
constant time and the array is static, deletions are O(1) time.



Figure 6. Request Buffer Layout (for illustrative purposes)

4.3.2 Request and Response Buffer Layout
In a typical server application each request is allocated con-
tiguous buffers for incoming and outgoing data. Unfortu-
nately, when executing on a GPU this data layout can un-
dermine the potential benefits of executing multiple requests
simultaneously. Specifically, GPU memory systems work
best when memory references of the co-scheduled threads
(referred to as a warp) exhibit good spatial locality (often
called coalesced memory accesses). While a single thread
has good spatial locality, across threads the memory loca-
tions accessed are separated by large distances.

To overcome this challenge we explore several methods.
One approach utilizes the GPU threads to cooperatively per-
form the operations of a single request (intra-request con-
currency). Unfortunately, this approach does not exploit the
similarity in instruction control flow across requests (inter-
request concurrency) and performs poorly. Therefore, we
use a second approach that performs a data transformation
on the buffers by transposing them to improve spatial local-
ity. We also insert whitespaces in the generated HTML con-
tent to tolerate control divergence in the response generation
stages.

Buffer Transpose We view the buffers per cohort as a 2D
array with each row representing the contiguous buffer for
a given request, as shown in Figure 6. Initially these buffers
are in row-major layout. To improve spatial locality within
a cohort, we need the array in column-major layout so that
thread buffers are interleaved in the sequential address space.
To achieve this, we perform a simple array transpose opera-
tion and leverage existing techniques to optimize the trans-
pose [48]. When the requests are finished processing we per-
form an additional transpose to convert the responses back
to row-major layout, with each buffer occupying contiguous
locations in the linear address space. Other server workloads
may require similar data structure design/transformations to
fully utilize the hardware capabilities available. Our ongoing
work is exploring other server workloads.

Whitespace Padding in HTML Content Transposing
buffers can provide coalesced memory accesses if the indi-
vidual thread buffer pointers are aligned (i.e., each thread
uses the same row index value). However, the web pages

in our system are dynamically generated with data returned
from the backend database; differences in returned data (i.e.,
string lengths) can result in unaligned buffer pointers. Fortu-
nately, we can exploit the HTML specification, which allows
an arbitrary number of linear white spaces in the response
body, to embed the appropriate number of whitespace char-
acters after newline characters for each buffer to realign the
buffer pointers.

Whitespace Padding in HTML Headers The HTTP re-
sponse header requires the Content-length field whose value
can only be known after the response is generated. Con-
ventional servers can generate the header after the entire
response content is created and use separate send() system
calls for the header and response. For our Rhythm implemen-
tation, we avoid the overhead of an additional header gen-
eration stage by integrating header creation with response
content creation. This creates an issue since the header is
located near the beginning of the response buffer. To over-
come this and ensure buffer pointer alignment we again ex-
ploit the HTML specification which allows white spaces af-
ter a header field. We reserve a fixed amount of space in the
buffer by inserting white space characters (10 for a 32-bit
content length), and replace whitespace with the actual con-
tent length value after the response is generated.

4.4 Error Handling
Rhythm maintains per request error state information to guar-
antee correctness. Request errors create control divergence
among threads in a cohort; however, we assume that these
scenarios are rare and do not impact throughput.

4.5 Request Flow in Rhythm
Figure 7 shows an overview of the request flow through the
Rhythm pipeline. The ovals represent execution on the host
and the boxes represent execution on the accelerator. The
event-based server on the CPU copies request information
into buffers on the device (step 1). When a sufficient num-
ber of requests arrive or the oldest request reaches a pre-
set timeout, the parser is launched (steps 2-3) to identify
and sort requests so that requests of the same type (PHP
file) are contiguous in memory. The next stage (step 4) dis-
patches cohorts (and possibly processes some requests on
the host CPU). Subsequent stages in the server include ac-
cessing backend storage services (step 7), handling back-
end responses (steps 8-10), and generating final HTML re-
sponses (steps 11-13).

4.6 CUDA Specifics
Our Rhythm prototype is implemented using CUDA on
NVIDIA GPUs. A stream is defined as a sequence of de-
pendent requests (memory copies or kernels) to the device,
and different streams can execute concurrently on the de-
vice. We use asynchronous streams to implement the parser,
the various process stages and the response stage of the



Figure 7. Rhythm Web Server Request Processing Overview

Rhythm pipeline. Memory pools are created at startup to
avoid allocation and synchronization overheads, and mem-
ory is recycled. We use atomics to perform lock-free inser-
tion and deletion into the session and cohort pools. We also
perform several optimizations to Rhythm based on CUDA
features, including:

• For padding in HTML content we perform a max butter-
fly reduction across a warp that uses CUDA shared mem-
ory to calculate the padding amount for each thread.

• We use CUDA constant memory where possible to store
static HTML content for pages.

• We store frequently used pointers in CUDA constant
memory instead of local memory to optimize register
usage and enable more inflight Rhythm cohorts.

Rhythm is designed from the ground up keeping high
throughput in mind, ideally with request arrival rate as the
only limiter. Our implementation is guided by our experi-
ence with SPECWeb Banking, and there are nearly endless
opportunities for continued optimization. We evaluate the
benefits and pitfalls of Rhythm on existing platforms, and
explore its potential to serve as a guideline for future server
architectures.

5. Methodology
5.1 Platforms
Table 1 shows the various platforms we use to test workload
performance. We use the quad-core Core i5 and Core i7 to
represent the x86 family, and the dual-core Cortex A9 to
represent the ARM family. The NVIDIA GTX Titan is used
for our GPU measurements.

We use the SPECWeb Banking benchmark [51] for our
studies. For general purpose processors we implement a
standalone event-based C version and for the GPU we im-
plement a Rhythm C+CUDA version. We implement 14 out
of 16 Banking requests, and normalize the request percent-
ages to sum to 100%. We skip the quick pay and check detail
images benchmarks. Quick pay uses a variable number of

Platform GHz Description
Core i5 3.4 Core i5 3570, 22 nm, 4 cores (4 threads),

8GB DDR3 RAM, 1Gbps NIC
Core i7 3.4 Core i7 3770, 22 nm, 4 cores (8 threads),

16GB DDR3 RAM, 1Gbps NIC
ARM A9 1.2 OMAP 4460, 45 nm, Panda board, 2

cores, 1GB LPDDR2 RAM
Titan 0.8 GTX Titan, 28 nm, 14 Streaming Multi-

processors, 6GB GDDR5 Memory

Table 1. Experimental System Platforms

kernel launches based on backend data, making it difficult
to implement, and check detail images is completely disk
bound, requiring GPUfs integration to allow us to process it
on the GPU. We plan to address both these requests in future
work. Table 2 summarizes characteristics about the Bank-
ing workload. The second column is the dynamic instruction
count for our standalone C implementation and is the aver-
age across 100 random requests, and when combined with
the third column we see a diverse mix of requests with vary-
ing compute/response byte ratios.

We use Ubuntu 12.04 with CUDA 5.5RC on our x86 plat-
form and Linaro 13.01 for our ARM platform. All code is
compiled using gcc with -O3 enabled. We test our server
against the SPECWeb client validator to guarantee correct-
ness. The X server is shut down for all our benchmark runs.
We unplug the GPU for the baseline x86 test runs. For the
CUDA version, we allocate 1KB per backend request and
4KB per backend response. We use the next higher power of
two for the HTML response size (Table 2), since powers of
two allow us to easily divide work on the hardware for the
response transpose.

We implement support for static images, however, image
throughput is primarily dictated by network bandwidth since
there is no processing involved. The parser groups image re-
quests into an image cohort, these cohorts bypass the pro-
cess stage and the image responses are sent to the respec-
tive clients. Image cohorts can be processed on the device



Request x86 Instructions Response Size (KB) Fraction of Backend
Type per Request SPECWeb Rhythm Requests (%) Requests
login 132,401 4 8 28.17 2
account summary 392,243 17 32 19.77 1
add payee 335,605 18 32 1.47 0
bill pay 334,105 15 32 18.18 1
bill pay status output 485,176 24 32 2.92 1
change profile 560,505 29 32 1.60 1
check detail html 240,615 11 16 11.06 1
order check 433,352 21 32 1.60 1
place check order 466,283 25 32 1.15 1
post payee 638,598 34 64 1.05 1
post transfer 334,267 16 32 1.60 1
profile 590,816 32 64 1.15 1
transfer 277,235 13 16 2.24 1
logout 792,684 46 64 8.06 0
Average 429,563 15.5 26.4 100 1.2

Table 2. SPECWeb Banking Workload

as well using GPUfs [50], however, we leave that to future
work. Static images can also be served at high throughputs
via Content Delivery Networks (CDNs) like Akamai [46].
We do not evaluate image throughput for our prototype.

5.2 Metrics
Our metrics of interest include 1) throughput, 2) power, 3)
latency, and 4) throughput/watt. We obtain throughput us-
ing the unix clock gettime() interface to measure end-to-end
time to process a set number of requests. Latency is calcu-
lated by logging the time that a request arrives and subtract-
ing the request completion time, and we compute an average
latency over all requests. Power is measured at the wall out-
let using a Kill-A-Watt meter. We measure the idle and test
power for each of our runs. Subtracting the two gives us the
dynamic3 power consumed by the workload. We examine
throughput/Watt for both wall power and dynamic power as
both of these represent different viewpoints on system effi-
ciency. A system’s cost of ownership is effectively based on
wall power, whereas dynamic power measures the marginal
costs incurred due to load.

5.3 Modeling Future Systems
SPECWeb’s default test harness is based on Java and is quite
slow, rendering it unusable for our system. We create our
own test harness and use various optimizations to allow us
to efficiently model future high bandwidth networks and
datacenter-level throughputs.

5.3.1 Input Generation
We use the C rand() function to randomly generate input
request data. For request types other than login, we randomly
generate session identifiers and populate the session array

3 We use dynamic to represent the non-idle power under load. This is
distinct from dynamic/static power used for circuit analysis.

with random user ids. We test each request type in isolation
and process 48M requests. Using the request distributions
from Table 2, we compute a weighted harmonic mean of
request efficiency(throughput/watt) to obtain the efficiency
for the entire workload.

5.3.2 Emulation
Our test system uses a 1Gbps NIC, and for an average
response size of 16KB, cannot support more than ∼ 8K
requests/sec. Similarly, PCIE bandwidth may artificially
limit throughput. To explore future system architectures, we
model three different Rhythm systems that progressively add
capabilities: Titan A, Titan B, and Titan C.

x86 and ARM platforms run our C version of the Bank-
ing workload. For maximum throughput, we eliminate net-
work and PCI limitations by generating requests from and
copying responses to main memory and implement the back-
end as a function call.

Titan A models a high bandwidth network by generating
requests locally and not sending responses across the net-
work. We run the backend locally as one or more threads
on the host to emulate the requisite backend throughput.
We pre-generate requests into a buffer, and read them from
memory on the fly to emulate high arrival rates.

Titan B extends the above design to eliminate the PCIe
bandwidth bottleneck by implementing the SPECWeb Besim
backend on the GPU. This emulates the effect of an SoC
style approach with an integrated general purpose core and
NIC. A local device backend also avoids the need to trans-
pose the backend request and response data, potentially fur-
ther improving performance.

Titan C further extends our system to emulate special-
ized hardware that performs the final transpose on the de-
vice after response generation, just prior to sending the re-
sponse on the network. The response transpose could be per-



formed on the host, on the NIC while reading data to send to
the clients, or by a specialized logic unit associated with the
memory controller (e.g., the logic layer of a 3D DRAM [2]).
The latter is a general approach that could be used for other
transpose operations in the Rhythm pipeline.

All of our optimizations are validated for correctness
since we run on real hardware, and we can examine the out-
put. Eliminating the network only eliminates the overheads
of the read() and write() system calls and the network stack,
and optimizing them is an important, but orthogonal issue
to our work. A local or device backend emulates a high
throughput key-value store [55], or the use of a database
cache [19] on the local machine, which is commonly used
to tolerate backend latencies.

6. Evaluation
Rhythm is designed as a free-flowing pipeline that serves
to maximally utilize the underlying accelerator hardware
to achieve optimal efficiency. This section presents our ex-
perimental results that confirm the expected limitations of
current system bottlenecks on throughput. We then show
how removing these bottlenecks enables Rhythm on a GPU
to operate at high throughput with high efficiency. We
also demonstrate that replicating general purpose cores to
achieve high throughput cannot match the efficiency of
Rhythm on today’s GPUs. However, we caution that our
results represent an initial exploration of the overall server
design space primarily to gauge where Rhythm sits with re-
spect to potential alternative platforms. A more comprehen-
sive study, which is beyond the scope of this paper, would
account for many differences such as technology node, dif-
ferent accelerators, etc. and include additional workloads.
Nonetheless, our results point towards the design of future
data parallel accelerators specialized for server workloads.

6.1 Overall Results
Table 3 shows the throughput, latency, wall and dynamic
power of the banking workload for our various modeled plat-
forms. More worker threads is always more beneficial for the
general purpose cores since it amortizes the fixed costs as-
sociated with powering on the chip. For our evaluation we
only consider the higher worker threads since they represent
the best operating point for each platform.

To gain better insight into the results we utilize a
throughput-efficiency plot that normalizes throughput to the
Core i7 eight worker threads and efficiency to the ARM
A9 two worker threads. Figure 8 shows the throughput-
efficiency for the various platforms. Considering both wall
power(Figure 8a) and dynamic power (Figure 8b), the Core
i5 is more power efficient than the i7, with efficiencies
comparable to the ARM, while delivering 75% of the i7’s
throughput. On the other hand, the ARM achieves only 4%
of the i7’s throughput, and 6% of the i5’s throughput. The
results also show that Titan A performs poorly in terms of

efficiency, and provides only marginal throughput improve-
ments. In contrast, Titan C provides massive gains in both
throughput and power efficiency, processing ∼ 1.5× more
requests per Joule compared to the ARM and delivering 7×
more requests per second compared to the Core i7. Titan
B provides more than 4× the throughput of the i7, though
at 91% dynamic efficiency and 124% wall efficiency of the
ARM.

The Core i7 and i5 both exhibit low response latency,
and even the ARM chip manages latencies of a few hun-
dred microseconds. Titan A exhibits high response laten-
cies, rendering it unusable for real server applications. Ti-
tan B and C perform relatively well, with latencies in 10s
of milliseconds. We also measured the 99th percentile la-
tency for our workloads, however it did not differ substan-
tially from the average latency. The 99th percentile latency
for different request types varies from 18%-40% of the av-
erage latency for Titan B, and varies from 7%-34% of the
average for Titan C. These latencies are tolerable [13], and
expected, since Rhythm sacrifices latency to achieve massive
gains in throughput and efficiency. We now evaluate the na-
ture of each Titan platform and their potential as exposed by
Rhythm.

6.1.1 Titan A: Emulated Remote Backend

Figure 9. PCIe 3.0 Limitations in Titan A for various re-
quest types

Running with an emulated remote backend involves
copies over the PCI Express bus for requests to, and re-
sponses from the backend. On current platforms, this limits
overall throughput. Rhythm transfers 1KB for the request
buffers, 1KB for the backend request, 4KB for the back-
end response and 26.4KB on an average for the response
over the PCIe bus. We can calculate the throughput bound
of the PCIe 3.0 bus by taking the ratio of the peak band-
width (12GB/s) and the data transferred per request. Figure 9
shows the achieved throughput and throughput bounded by
the available PCIe 3.0 bandwidth for the different request
types. We can see that all requests achieve throughputs rang-
ing from 83% to 95% of the PCI bounds. The minor differ-
ence between the two is expected since we transfer data in
smaller chunks, which does not allow us to reach peak PCIe



(a) Wall Power (b) Dynamic Power

Figure 8. Throughput-Efficiency for Wall Power (a) and Dynamic Power (b). Throughput (y-axis) is normalized to Core i7 8
workers and efficiency (x-axis) to ARM A9 2 workers. The shaded region represents the desired operating range.

Platform
Power (Watts) Latency Throughput Reqs/Joule (Efficiency)

Idle Wall Dynamic (ms) (KReqs/s) Wall Dynamic
Core i5 1 worker 47 67 20 0.016 75 972 3283
Core i5 4 workers 47 98 51 0.016 282 2447 4712
Core i7 4 workers 45 147 102 0.014 331 1901 2735
Core i7 8 workers 45 156 111 0.014 377 2042 2873
ARM a9 1 worker 2 3.4 1.4 0.176 8 1672 4061
ARM a9 2 workers 2 4.5 2.5 0.176 16 2683 4830

Titan A 74 226 152 86 398 1469 2193
Titan B 74 306 232 24 1535 3329 4410
Titan C 74 285 211 10* 3082 9070 12264

Table 3. SPECWeb Banking Experimental Results. *Titan C Latency is for transposed response

bandwidth. We can see that Rhythm on Titan A is primarily
limited by the PCIe 3.0 bandwidth, which creates a struc-
tural hazard in the Rhythm pipeline, leading to stalls and a
loss in power efficiency.

A potential enabling trend is the PCIe 4.0 standard, which
doubles usable bandwidth to 24 GB/s. This could increase
Titan A’s throughput to 864K reqs/s and a commensurate
increase in efficiency that may bring it near the ARM A9’s
efficiency (depending on the PCIe 4.0 power). However,
even at 25 GB/s, the PCIe bus is still a bottleneck for Rhythm
on a Titan.

6.1.2 Titan B: Integrated NIC and Device Backend
Titan B increases Rhythm’s average throughput to more than
4× that of the core i7 achieving more than 1.5M reqs/sec,
at 91% dynamic efficiency and 124% wall efficiency of the
ARM chip.

We note that Titan B’s throughput and efficiency could
improve if we used a better response padding method. Many

request types incur significant overhead due to excessive
padding since their total response size is just beyond one
power of two and we simply round up to the next power of
two. This introduces exponentially more overhead for trans-
poses for larger response sizes. Cross-referencing response
sizes in Table 2 with dynamic efficiency in Figure 10 for dif-
ferent requests, we observe that for small responses (i.e., lo-
gin) or where Rhythm uses a response buffer close to the size
of the original response (e.g., change profile and transfer),
Titan B achieves throughput 3.5×-5× higher than the core
i7, with dynamic efficiencies of 105% to 120% of the ARM,
showing room for further optimization. We further analyze
this difference and observe that the response transpose takes
up a significant fraction of device time, and creates bubbles
in the Rhythm pipeline. Titan C removes this limitation.

6.1.3 Titan C: Increasing Device Utilization
Titan C tries to push the Rhythm pipeline to its limits by in-
creasing GPU utilization and offloading the response trans-



Figure 10. Throughput-Efficiency for different request
types on Titan B (dynamic power). Rhythm buffer sizes that
are close to required sizes perform well (shaded area repre-
sents the desired operating range).

pose. With these optimizations, Titan C achieves more than
3M reqs/sec on an average, or more than 8× the through-
put of the Core i7. Increasing GPU utilization amortizes the
fixed power overheads, achieving a dynamic efficiency of
more than 2.5× that of the ARM, and a wall efficiency of
more than 3.3×. These numbers ignore power to perform
the transpose, and as we show in the next section, with an
ample power budget for the transpose, Rhythm can still out-
perform the ARM in efficiency while achieving far greater
throughputs.

6.2 Scaling Many Core Processors
A natural comparison for achieving high throughput is to
scale the number of general purpose cores to match the
throughput of Rhythm on both Titan B and Titan C. We use
single thread throughput for the general purpose cores and
idealistically assume linear performance scaling. The scaled
systems incur additional uncore overhead to support scaling,
such as additional chip I/Os, on chip interconnect, additional
memory controllers and memory, etc. We use the i5 for scal-
ing instead of the i7 due to its higher dynamic efficiency (Ta-
ble 3). Based on our measurements, and other studies [35],
we assume a dynamic power of 1W per ARM core and 10W
per i5 core. The power available for the uncore overhead is
the difference between the idealized scaled system’s power
and the Titan platform’s power.

With respect to Titan B (dynamic power), we need 192
ARM cores and 21 i5 cores to match throughput, requiring
192W and 210W, respectively. Titan B uses 232W, leaving
only 40W for the ARM (21%) or 22W (10%) for the i5 avail-
able for uncore scaling overhead. Compared to Titan C, we
need 385 ARM cores and 41 i5 cores to match throughput.
This results in 385W for the ARM system and 410W for

the i5 system, and Titan C has more than 170W in which to
implement the transpose operation and still outperform the
scaled systems.

Given that the Titan-based systems also have room to re-
duce overall power consumption (e.g., lower power DRAM,
eliminate GPU specific features, etc.) it appears difficult for
simple replicated designs to match the overall throughput
and throughput/watt of Rhythm on GPU-style accelerators.
However, a more detailed analysis of complete server de-
sign, including specialized data parallel accelerators, is re-
quired, and we leave that to future work.

6.3 System Resource Requirements
Network Bandwidth We perform our experiments on
Rhythm for a request size of 512B, a backend request size
of 1KB and a 4KB backend response size. Using the av-
erage value of the response size of the SPECWeb Banking
workload (Table 2), and the average number of backend re-
sponses, we can easily calculate the network bandwidth re-
quirements of our Titan platforms. At an average through-
put of 398K reqs/s, Titan A requires a N/W bandwidth of
67 Gbps, Titan B requires 258 Gbps and Titan C requires
517 Gbps. All of these numbers assume raw uncompressed
data. Most modern web browsers support compression and
research has demonstrated more than 80% compression of
HTML content in pages for popular websites [37]. A com-
pression ratio of 80% means that Titan C can easily be oper-
ated on a 100Gbps link, already defined by the IEEE 802.3bj
standard [1].

Memory Capacity We are currently limited by the memory
on the device. For our experiments, we emulate 16M active
sessions on the GPU, and at 40B per session, this requires
640MB of memory. The session array is implemented as a
hash table using random insertion, and we allocate memory
for 64M sessions to reduce the chance of a collision to 25%,
but this requires 2.5GB of device memory. Since all memory
is preallocated in pools, we also need to allocate enough
memory for the process phase, backend data, request buffers,
response buffers and transpose buffers to avoid structural
hazards in the pipeline. The memory required for buffers
increases linearly with cohort size, therefore, we are limited
to 8 cohorts in flight of size 4096 requests each on the GTX
Titan.

6.4 Miscellaneous
CPU based SIMD implementations Web service work-
loads and data parallel hardware are a great match, and
Rhythm provides a way to bring the two together by exploit-
ing similarity amongst requests to enable SIMD processing.
The GPU’s throughput oriented SIMT architecture provides
a good platform to test this approach. A SIMD based im-
plementation on current CPUs would provide a useful data
point in this design space as well. We leave this exploration
to future work.



Cohort Size sensitivity We performed experiments on
Rhythm for cohort sizes ranging from 256 to 8192, and found
4096 to provide the right balance between high throughput
and memory limitations. Larger cohort sizes are better for
throughput since they allow more work to be launched on
the GPU, however, they require more memory. Larger co-
hort sizes also impact response latency, since it takes more
time to form a cohort. However, for arrival rates of the order
of a million reqs/sec, cohort formation times are negligible.

Parser divergence Our current experiments run the same
type for requests on the parser, however, this reduces con-
trol divergence in the parser. In a real world system, multi-
ple request types would arrive at the parser, increasing con-
trol divergence and reducing single parser throughput. We
measured parser latency for a real Specweb Banking Trace
containing a mix of requests and images. On an average, the
parser takes 556us including the request buffer tranpose, giv-
ing a throughput of 7.4M reqs/sec for a cohort size of 4096.
Therefore, the parser is fast enough even when it is process-
ing cohorts of different types. The Rhythm design also allows
for multiple parsers to be launched concurrently, and for
higher throughputs, this would further help in hiding parser
latency.

HyperQ We performed our experiments on a NVIDIA
GTX690 as well, however, a single work queue between
the host and device created false dependencies among pro-
cess kernels, limiting throughput. The GTX Titan supports
32 simultaneous work queues (HyperQ), allowing for much
higher throughput and GPU utilization. Rhythm can expose
significant concurrency and the hardware must be capable
of exploiting it. Emulating future platforms with integrated
high bandwidth devices exposed the benefit of having Hy-
perQ scheduling on the GPU.

7. Related Work
This paper touches on topics across a broad spectrum of
computer systems related topics, including, but not limited
to: server design, operating system design and implementa-
tion, system and processor architecture, and data layout opti-
mizations. For brevity, we focus on some of the most closely
related research.

At the application mapping level, several researchers
have explored general purpose use of GPUs [9, 12, 27]
and mapping non-traditional workloads onto GPUs, such
as MIMD programs [14], database queries (e.g., [6, 24, 57],
etc.) and memcached [28], and software routers [26]. Other
work explores the potential opportunities created by delay-
ing server requests for either improved memory hierarchy
performance [34] or energy management [33, 41], and al-
locating compute resources dynamically based on load in
staged servers [56].

Recent microarchitecture work [54] shows the benefits
of data-triggered threads and methods for eliminating re-
dundant computation, while other work (MMT [38] and

Thread Fusion [23]) shows the benefit of exploiting iden-
tical instructions in SMT processors to remove redundant
operations (i.e., fetch, execute, etc.). Our work focuses on
coarser grain identification of cohorts and targets different
applications, but may benefit from the addition of these
methods. STREX [5] improves transaction processing by
aligning instructions to reduce cache misses. Other work
[7] explores data similarity and memory hierarchies that
can merge identical content used by different cores into a
single cache line. Thread scheduling on GPUs has been
addressed in the context of reducing the impact of con-
trol divergence [21, 22, 42, 53]. More generally, several
researchers are exploring processor design for data center
workloads [10, 17, 31, 32, 35, 36, 39, 43].

8. Conclusion
A dramatic increase in the number of data centers in the
last decade and their multi-megawatt power budgets has
sharply brought into focus the energy economics of web
services. We propose the use of data parallel accelerators and
a software architecture called Rhythm to address throughput
and efficiency demands of future server workloads. Rhythm
is based on the insight that maximal power efficiency of
an accelerator comes from maximizing utilization since it
amortizes fixed system costs. We show Rhythm achieves
throughput 4× to 8× of an 8 thread core i7 at efficiencies
(requests/joule) comparable to or higher than a dual core
ARM Cortex A9.

This work serves as a milestone that demonstrates that
Web Servers and data parallel accelerators are a great match.
Even on current generation GPU hardware, Rhythm outper-
forms both the x86 and ARM architectures. We plan to ex-
plore ways to increase the efficiency of Rhythm by design-
ing data parallel processors specialized for server workloads.
Currently, we test Rhythm on GPUs, and other accelerators
like the Xeon Phi, NEON and Tegra also provide interesting
possibilities. Programming for accelerators involves a sig-
nificant amount of effort, and we are working on creating
a language for regaining programmer productivity. We are
also exploring other workloads like Search, Email and Chat,
and deploying them using Rhythm. This paper is just a first
step in exploring an exciting and varied design space.
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