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ABSTRACT
Table partitioning splits a table into smaller parts that can
be accessed, stored, and maintained independent of one an-
other. The main use of partitioning used to be in reduc-
ing the time to access large base tables in parallel systems.
Partitioning has evolved into a powerful mechanism to im-
prove the overall manageability of both centralized and par-
allel database systems. Partitioning simplifies administra-
tive tasks like data loading, removal, backup, statistics main-
tenance, and storage provisioning. More importantly, SQL
extensions and MapReduce frameworks now enable applica-
tions and user queries to specify how derived tables should
be partitioned. However, query optimization techniques have
not kept pace with the rapid advances in usage and user con-
trol of table partitioning. We address this gap by developing
new techniques to generate efficient plans for SQL queries
involving multiway joins over partitioned tables. Our tech-
niques are designed for easy incorporation into bottom-up
query optimizers in centralized and parallel database sys-
tems. We have prototyped these techniques in PostgreSQL
and in a parallel database system composed of PostgreSQL
nodes managed by Hadoop. An extensive evaluation shows
that our partition-aware optimization techniques, with low
overhead, generate plans that are often an order of magni-
tude better than plans produced by current optimizers.

1. INTRODUCTION
Table partitioning is a standard feature in database sys-

tems today [12, 13, 19, 20]. For example, a sales records
table may be partitioned horizontally based on value ranges
of a date column. One partition may contain all sales records
for the month of January; another partition may contain all
sales records for February; and so on. A table can also be
partitioned vertically with each partition containing a sub-
set of columns in the table. Hierarchical combinations of
horizontal and vertical partitioning may also be used.
Growing use of table partitioning: The most popular
use of partitioning is in shared-nothing parallel database sys-
tems. These systems store each partition in a separate node
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so that the partitions can be processed in parallel during
query processing. This use continues to grow with the fast
increasing data sizes in high-end data warehousing systems.
At the same time, two trends have turned partitioning into a
popular technique used in a wide range of database systems:
• Apart from giving major performance improvements, ta-

ble partitioning simplifies a number of common admin-
istrative tasks in database systems.

• MapReduce frameworks as well as SQL extensions from
database vendors now give applications and user queries
the power to specify how derived tables are partitioned.

Table partitioning improves ease of administration of large
databases in a number of ways. Table 1 in Appendix A
summarizes various uses of partitioning in modern database
systems ranging from more efficient loading and removal of
data on a partition-by-partition basis (reducing contention
and improving data availability) to finer control over the
choice of physical design, statistics creation, and storage pro-
visioning based on the workload. Interestingly, as shown in
Table 1, most high-level uses of table partitioning in modern
databases apply irrespective of whether the system is cen-
tralized or parallel; only the implementation details differ.

Application and user control of partitioning: The
growing use of partitioning has been accompanied by an
effort to give applications and user queries the ability to
specify partitioning conditions for tables that they derive
from base data. MapReduce frameworks enable users to
provide partitioning functions that dictate how the data out-
put by the map tasks is partitioned across the reduce tasks.
This feature is used extensively in well-tuned MapReduce
programs as well as by the Hive and Pig frameworks that
translate declarative queries into MapReduce programs for
execution [10, 15]. Hive’s SQL-like HiveQL query language
offers direct support to specify table partitioning.

Application and user control of table partitioning enables
both new functionality—e.g., total-order partitioning is used
in MapReduce programs to produce final output (in parallel)
that is totally ordered—as well as better performance—e.g.,
by balancing the load across all reduce tasks. There is grow-
ing interest among database vendors in providing query in-
terfaces that combine the best features of SQL and MapRe-
duce; and we are starting to see SQL extensions that provide
first-class support for partitioning [7].

1.1 Partition-aware Query Optimization
Query optimization technology has not kept pace with

the growing usage and user control over table partitioning.
Previously, query optimizers only had to account for the
restricted partitioning schemes that a database administra-



Figure 1: Horizontal partitions of tables R, S, T

tor (DBA) specified on the base tables in a parallel system.
More challenges and opportunities exist today for optimiz-
ing queries over partitioned tables. We will illustrate them
using a running-example query Q over the three partitioned
tables R(a), S(a, b), and T (b) shown in Figure 1.

Q: Select *
From R, S, T
Where R.a=S.a and S.b=T.b and R.a >= 5 and R.a <= 35

Attribute a is an integer and b is a date. Table R is equi-
partitioned on ranges of a into three partitions R1-R3; each
of partitions T1-T3 of table T contain all records for a re-
spective month; table S has a multidimensional partitioning
on attributes a and b into partitions S1-S5.

Per-table partition pruning: An optimization that many
current optimizers would apply to Q is to prune out parti-
tions R3 and S5 from consideration because records with
R.a > 40 cannot be part of Q’s result. (S5 will be pruned
only if the optimizer does a transitive closure of the join
and filter predicates in Q.) Partition pruning can speed up
query performance drastically by eliminating unnecessary
table and index scans as well as reducing memory needs,
disk spills, and contention-related overheads.

Join-aware partition pruning: Partition T3 can also be
pruned using a deeper optimization technique that most cur-
rent optimizers do not use. To apply this optimization, the
optimizer has to reason that records in T3 can only join with
records in S5 and R3 because of the partitioning conditions
(illustrated using dotted lines in Figure 1). Pruning S5 and
R3 leaves T3 with no joining records, so T3 can be pruned.

Partition-aware join path selection: Consider a cen-
tralized database system that stores all the partitions from
Figure 1 on a single node. Plan P1 from Figure 2 is an exam-
ple plan that this system may use to process Q (assuming
that the optimizer is smart enough to prune R3 and S5).
Plan P1 logically appends the unpruned partitions for each
table, and joins the appended partitions using (centralized)
join algorithms like hash and merge join. The partitions are
accessed using table or index scans.

Depending on the data properties, physical design, and
storage characteristics in the database system, a plan like
P2 shown in Figure 2 can significantly outperform plan P1.
P2 exploits a number of properties of the given setting:
• Records in partition R1 can join only with S1 ∪ S2 and

T1. Similarly, records in partition R2 can join only with
S3 ∪ S4 and T2. Thus, the full R ./ S ./ T join can be
broken up into joins that are smaller and more efficient.

• The best join order for R1./(S1∪S2)./ T1 can be different
from that for R2./(S3 ∪ S4)./ T2. One likely reason is
change in the data properties of tables S and T over

Figure 2: Plans for query Q. P1: from current opti-
mizer; P2, P3: from our advanced optimizer

time, causing variations in statistics across partitions.1

• The best choice of join operators for R1 ./ (S1∪S2) ./ T1

may differ from that for R2 ./ (S3 ∪ S4) ./ T2, e.g., due
to storage or physical design differences across partitions
(e.g., index created on one partition but not on another).

Next, let us consider the same query in a parallel database
system where the relevant partitions are stored as follows:
(i) Node N1 stores partitions R1, S1, S2, and T1; (ii) Node
N2 stores partitions R2 and S3; and (iii) Node N3 stores
partitions S4 and T2. Now an additional complexity arises:
partitions that need to be joined are not all on the same
node, so some partitions have to be copied to other nodes.

Plan P3 in Figure 2 is an example plan for Q in the parallel
system. P3 consists of three subplans that execute on nodes
N1, N2, and N3, respectively producing the result fragments
R1./(S1∪S2)./ T1, R2./S3./T2, and R2./S4./T2. (If needed,
the full join result can be copied finally to a single node.)
The communication cost of P3 includes copying partition R2

from N2 to N3, and T2 from N3 to N2. Depending on the
computation Vs. communication cost tradeoff in the parallel
system, there may be other plans that are superior to P3.

1.2 Contributions
The above example illustrates the space of optimization

possibilities for queries over partitioned tables. To our knowl-
edge, no current optimizer (commercial or research proto-
type) takes this full space into account to find efficient plans
with low optimization overhead. We address this limitation
by developing an advanced partition-aware query optimizer:
• Our new techniques are designed for easy incorporation

into bottom-up query optimizers (like the seminal Sys-
tem R optimizer [18]) that are in wide use today. With
this design, we can leverage past investment as well as fu-
ture enhancements to these optimizers (e.g., new rewrite
rules, new join operators, and cost model improvements).

• In addition to conventional DBA-specified conditions on
base tables, our optimizer can optimize for a wide range
of user-specified partitioning conditions including multi-
dimensional conditions or those involving varying ranges.

• We have developed versions of our optimizer for both
centralized and parallel database systems, prototyped re-
spectively in PostgreSQL and a shared-nothing system
of PostgreSQL nodes managed by Hadoop (like [1]).

• An extensive evaluation shows that our optimizer, with
low optimization-time overhead, generates plans that out-
perform plans generated by current optimizers.

1Most enterprises keep 6-24 months of historical data online.



2. RELATED WORK
Various table partitioning strategies and techniques to

find good partitioning strategies automatically have been
proposed (e.g., [17, 3]). Because of space constraints, this
section focuses on work related to partition-aware optimiza-
tion.

Partition pruning: Most commercial optimizers have ex-
cellent support for per-table partition pruning. In addition
to optimization-time pruning, systems like IBM DB2 sup-
port execution-time pruning of partitions, e.g., to account
for join predicates in index-nested-loop joins [12].

Partition-aware join processing: Some optimizers gen-
erate plans containing n one-to-one partition-wise joins for
any pair of tables R and S that are partitioned into the same
number n of partitions with one-to-one correspondence be-
tween the partitions [13, 20]. For joins where only table R
is partitioned, Oracle supports dynamic partitioning of S
based on R’s partitioning; effectively creating a one-to-one
join between the partitions. Partition-aware join algorithms
used in parallel database systems are described in Section 6.

Selectivity-based partitioning [16], content-based routing [4],
and conditional plans [6] are techniques that enable differ-
ent plans to be used for different subsets of the input data.
Unlike our work, these techniques focus on dynamic parti-
tioning of (unpartitioned) tables and data streams rather
than exploiting the properties of existing partitions. Fur-
thermore, seamless incorporation into widely-used optimiz-
ers in centralized and parallel database systems is not a focus
of [4, 6, 16]. A recent work considers multiway join process-
ing in MapReduce frameworks, but does not consider the
problem of using existing partitions efficiently [2].

3. PROBLEM AND SOLUTION OVERVIEW
Our goal is to generate an efficient plan for a SQL query

that contains joins of partitioned tables. In this paper, we
focus on tables that are partitioned horizontally based on
conditions specified on one or more partitioning attributes
(columns). The condition that defines a partition of a table
is an expression involving any number of binary subexpres-
sions of the form Attr Op Val, connected by and or or logical
operators. Attr is an attribute in the table, Val is a constant,
and Op is one of {=, 6=, <,≤, >,≥}.

Joins in the SQL query can be equi or nonequi joins. The
joined tables could have different numbers of partitions (like
in Figure 1). Furthermore, the partitions between joined
tables need not have one-on-one correspondence with each
other. For example, one table may have one partition per
month while the other has one partition per day.

We consider both centralized and shared-nothing parallel
databases with three key differences between them:
• Physical join operators in a parallel system differ from

their centralized counterparts. Details are in Section 6.
• Each partition in a shared-nothing parallel system is as-

sociated with the location of the node where the partition
resides. This information is usually treated by bottom-
up optimizers (including ours) as a physical property [8].

• A two-phase approach, rewrite and join ordering followed
by parallelization [11, 9], is used by most parallel opti-
mizers (including ours) to reduce optimization complex-
ity.

Our approach for partition-aware query optimization is based
on extending bottom-up query optimizers. We will give an
overview of the well-known System R bottom-up query op-

timizer [18] on which a number of current optimizers are
based, followed by an overview of the extensions we make.

A bottom-up optimizer starts by optimizing the smallest
expressions in the query, and then uses this information to
progressively optimize larger expressions until the optimal
plan for the full query is found. First, the best access path
(e.g., table or index scan) is found for each table in the
query. The best join path is then found for each pair of
joining tables R and S in the query. The join path consists
of a physical join operator (e.g., hash or merge join) and the
access paths found earlier for the tables. Next, the best join
path is found for all three-way joins in the query; and so on.

Bottom-up optimizers pay special attention to physical
properties like sort order and partition location that affect
the ability to generate the optimal plan for an expression
e by combining optimal plans for subexpressions of e. For
example, for R ./ S, the (centralized) System R optimizer
stores the optimal join path for each interesting sort order
[18] of R ./ S that can potentially reduce the plan cost of any
larger expression that contains R ./ S (e.g., R ./ T ./ S).

Our extensions: Consider the join path selection in a
bottom-up optimizer for two partitioned tables R and S.
R and S can be base tables or the result of intermediate
subexpressions. Let the respective partitions be R1-Rr and
S1-Ss (r, s ≥ 1). For ease of exposition, we call R and S the
parent tables in the join, and each Ri (Sj) a child table. By
default, the optimizer will consider a join path correspond-
ing to (R1 ∪R2 · · · ∪Rr) ./ (S1 ∪S2 · · · ∪Ss), i.e., a physical
join operator that takes the bag union of the child tables as
input. This approach leads to plans like P1 in Figure 2.

Partition-aware optimization must consider joins among
the child tables in order to get efficient plans like P2 in Figure
2; effectively, pushing the join below the union(s). Joins of
the child tables are called child joins. When the bottom-
up optimizer considers the join of partitioned tables R and
S, we extend its search space to include plans consisting of
the union of child joins. This process works in four phases:
applicability testing, matching, clustering, and path creation.

Applicability testing: We first check whether the speci-
fied join conditions between R and S match the partition-
ing conditions on R and S appropriately. Intuitively, effi-
cient child joins can be utilized only when the partitioning
columns are part of the join attributes. For example, the
R.a = S.a join condition makes it possible to utilize the
R1 ./ (S1 ∪ S2) child join in plan P2 in Figure 2.

Matching: This phase uses the partitioning conditions to
determine efficiently which joins between individual child ta-
bles of R and S can potentially generate output records, and
prune the empty child joins. For R ./ S in our running ex-
ample query, this phase outputs {(R1, S1),(R1, S2),(R2, S3),
(R2, S4)}; the remaining child joins are pruned.

Clustering: Production deployments can contain tables
with hundreds of partitions that lead to a large number of
joins between individual child tables.2 To reduce the join
path creation overhead, we carefully cluster the child tables;
details are in Section 5. For R ./ S in our running example
and a centralized database, the matching phase’s output is
clustered such that only the two child joins R1./(S1 ∪ S2)
and R2./(S3 ∪ S4) are considered during path creation.

2We are aware of such deployments in a leading social net-
working company and for a commercial parallel DBMS.



Path Creation: This phase creates and costs join paths for
all child joins output by the clustering phase, as well as the
path that represents the union of the best child-join paths.
This path will be chosen for R ./ S if it costs lower than the
one produced by the optimizer without our extensions.

The next three sections give the details of these phases. Sec-
tion 6 will also show how plans with different join orders
among the child tables (like plan P2) will get generated as
the optimizer considers larger join expressions progressively.

4. MATCHING PHASE
Suppose the bottom-up optimizer is in the process of se-

lecting the join path for parent tables R and S with respec-
tive child tables R1, . . . , Rr and S1, . . . , Ss. The goal of the
matching phase here is to generate all join pairs Ri, Sj such
that Ri ./ Sj can produce output tuples as per the given
partitioning and join conditions. An obvious matching al-
gorithm would enumerate and check all the r× s child table
pairs. The real inefficiency from this quadratic algorithm
is that it gets invoked from scratch for each distinct join
of parent tables considered throughout the bottom-up opti-
mization process. Recall that R and S can be base tables
or the result of intermediate subexpressions.
Partition Index Trees (PITs): We developed a more ef-
ficient matching algorithm that builds, probes, and reuses
Partition Index Trees (PITs). The core idea is to associate
each child table with one or more intervals generated from
the table’s partitioning condition. An interval is specified as
a numeric range (e.g., (0, 10]) or a single numeric or categor-
ical value (e.g., [5, 5], [Jan,Jan]). A PIT indexes all intervals
of all child tables for one of the partitioning columns of a
parent table. The PIT then enables efficient lookup of the
intervals that overlap with a given probe interval from the
other table. Use of PITs provides two main advantages:
• For most practical partitioning and join conditions, build-

ing and probing PITs has O(r log r) complexity. The
memory needs are θ(r).

• Most PITs are built once and then reused many times
over the course of bottom-up optimization. For exam-
ple, consider the three-way join condition R.a=S.a AND
R.a=T.a. The same PIT on R.a will be reused for four
joins: R ./ S, R ./ T , (R ./ S) ./ T , and (R ./ T ) ./ S.

Matching algorithm: Suppose R.a=S.a is the join con-
dition, and the partitioning conditions are simple ranges on
R.a and S.a respectively. Also, let R have fewer child tables
than S. Then, the matching algorithm works as follows:
• Build phase: For each child table Ri of R, generate the

interval for Ri’s partitioning condition. Build a PIT that
indexes all intervals for R.

• Probe phase: For each child table Sj of S, generate the
interval int for Sj ’s partitioning condition. Probe the
PIT on R.a to find intervals overlapping with int. Only
R’s child tables corresponding to these intervals can have
tuples joining with Sj ; output the identified join pairs.

For R ./ S in our running example query, the PIT on
R.a will contain the intervals (0, 20] for child table R1 and
(20, 40] for R2. When this PIT is probed with the inter-
val (0, 10] for child table S1, the result will be the interval
(0, 20]; indicating that only R1 will join with S1.

Implementation: The description so far was simplified for
ease of presentation. The full details are given in Appendix
B.1. A number of nontrivial enhancements to PITs and
the matching algorithm were needed to support complex

Figure 3: Clustering algorithm applied to the run-
ning example query in a parallel system

partitioning and join conditions that can arise in practice.
PIT, at a basic level, is an augmented red-black tree [5].
However, PITs need support for multiple types of intervals:
open, closed, partially closed, one sided (e.g., (−∞, 3]), and
single values. In addition, supporting nonequi joins required
support from PITs to efficiently find all intervals in the tree
that are to the left or to the right of the probe interval.

Both partitioning and join conditions can be complex com-
binations of AND and OR subexpressions, as well as involve
any operator in {=, 6=, <,≤, >,≥}. Our implementation
handles all these cases by restricting PITs to unidimensional
indexes and handling complex expressions appropriately in
the matching algorithm; see Appendix B.1.

5. CLUSTERING PHASE
The number of join pairs output by the matching phase

can be large, e.g., when each child table of R joins with
multiple child tables of S. In such settings, it becomes im-
portant to reduce the number of join pairs that need to be
considered during join path creation. (Join path creation
has overheads like cardinality estimation, enumerating join
operators, as well as accessing catalogs, cost models, and
statistics.) The approach we use to reduce the number of
join pairs is to cluster together multiple child tables of the
same parent table. Figure 3 shows the example from Section
1 for the parallel database system. The four join pairs out-
put by the matching phase are shown. If S1 is clustered with
S2, and S3 with S4, then only the two (clustered) join pairs
R1 ./ (S1 ∪ S2) and R2 ./ (S3 ∪ S4) need to be considered.
Clustering metric: When can two child tables Sj and Sk

be clustered together? First and foremost, there must exist
a child table Ri such that the matching phase outputs the
join pairs (Ri, Sj) and (Ri, Sk). Otherwise, a union of Sj

and Sk will lead to unneeded joins with child tables of R.
Second, Sj and Sk must be indistinguishable from the

perspective of joining with Ri. Stated otherwise, Sj and
Sk must not have any property that makes it important to
consider separate join paths for Ri ./ Sj and Ri ./ Sk. One
such property is the location of the child table in a parallel
database system. Consider our running example query from
Section 1 where partition S3 is on node N2, while S4 is on
N3. In this case, R2 ./ S3 and R2 ./ S4 have to be treated
independently because the latter needs an inter-node copy
while the former does not.

Other interesting properties that make it important to
consider Sj and Sk independently with respect to the join
with Ri include: (i) the presence of an index on the joining
attribute on Sj , but not on Sk; or (ii) Sj is stored on a faster
disk than Sk. Such properties are associated as a tag with
each child table. For example, the tag per child table in
Figure 3 is the node where the table is located.



Algorithm for clustering the output of matching phase
Input: Join pairs, with a tag per child table
Output: Clustered join pairs input to join path creation phase
Build the bipartite join graph from the input join pairs;
For each vertex V in the join graph {

Let t1, . . . , tk be the tags of vertices connected to V ;
Create new vertices V1, . . . , Vk in the join graph;
Add edges from Vk to each vertex with tag tk connected to V;
Remove vertex V and all its edges from the join graph;

}
Use breadth first search to identify each connected component

in the modified join graph;
Output a clustered join pair per connected component;

Figure 4: Clustering algorithm

Clustering algorithm: Figure 4 shows the clustering al-
gorithm that takes as input the join pairs output by the
matching algorithm. Each child table is associated with a
tag; with the default being that all tags are the same. The
algorithm first constructs the join graph from the input join
pairs. Each child table is a vertex in this bipartite graph,
and each join pair forms an edge between the corresponding
vertices. Figure 3 shows the join graph for our example.

As described in Figure 4, each vertex V in the join graph
is split further if V is connected to vertices with different
tags. For example, in Figure 3, R2 is connected to S3 and
S4 that have tags N2 and N3 respectively. Hence, R2 will
get split so that edges from S3 and S4 go to different copies.

Finally, each connected component in the modified join
graph will give a (possibly clustered) join pair. Thus, the
output of the clustering phase in Figure 3 consists of the
three joins R1 ./ (S1 ∪ S2), R2 ./ S3, and R2 ./ S4. In
contrast, if all the partitions were on the same (centralized)
node, then the output of the clustering phase will consist of
the two joins R1 ./ (S1 ∪ S2) and R2 ./ (S3 ∪ S4).

6. PATH CREATION
This phase creates and costs join paths for all (clustered)

child joins output by the clustering phase, as well as the
union of the best child-join paths. We leverage existing op-
timizer functionality to create join paths since path creation
is coupled tightly with the physical join operators supported
by the system. Control is then given back to the optimizer
which picks and stores the least-cost path for the join of the
parent tables, and continues bottom-up optimization.

The physical join operators in a centralized database sys-
tem include hash, (sort) merge, and nested-loop joins. Join
operators in parallel systems include collocated, directed, and
repartitioned joins [17]. A collocated join applies to tables
that reside on the same node. A directed join moves one
table to the node containing the other table to do the join.
A repartitioned join reads both tables, applies a new parti-
tioning condition (e.g., hash) on the join columns, and sends
corresponding partitions to nodes that will perform the join.

The combination of how the bottom-up optimizer enumer-
ates joins of all parent tables with how our techniques create
paths for child joins makes it possible to produce plans like
P2 in Figure 2 where different child joins can have different
join orders or operators. We illustrate this observation using
our running example query in a centralized database. Dur-
ing bottom-up optimization, the optimizer will find the best
join path for R ./ S. The matching and clustering phases
will create the child joins R1 ./ (S1∪S2) and R2 ./ (S3∪S4);
and path creation generates the best join paths for them.
The best join path for R1 ./ (S1 ∪ S2) could involve a hash

join, while the best path for R2 ./ (S3∪S4) involves a merge
join. A similar process occurs for S ./ T .

As optimization progresses, the optimizer will consider
(R./S)./T . Our techniques will then treat R ./ S as a par-
ent table with two child tables R1./(S1 ∪S2) and R2./(S3 ∪
S4), and proceed to generate join paths for the child joins
(R1./(S1∪S2))./T1 and (R2./(S3∪S4))./T2. Later, the op-
timizer will consider (S./T )./R, which leads to join paths
for ((S1∪S2)./T1)./R1 and ((S3∪S4)./T2)./R2. It is possi-
ble that the best join path for (R1./(S1 ∪ S2))./T1 is better
than that for ((S1∪S2)./T1)./R1, while the opposite occurs
between (R2./(S3∪S4))./T2 and ((S3∪S4)./ T2)./R2; which
will lead to the selection of plan P2 (Figure 2) for the query.

Cardinality estimates are needed for costing during path
creation. Often, statistics are kept at the level of partitions.
When the optimizer considers joining unions of partitions,
the estimates are made by aggregating statistics over parti-
tions. This process can give inaccurate estimates and subop-
timal plan choices. A benefit of considering child joins over
partitions is that it increases the chances of using partition-
level statistics directly for costing. More details are provided
in Appendix B.3.

7. EXPERIMENTAL EVALUATION
In order to demonstrate the applicability of our tech-

niques, we have prototyped partition-aware query optimizers
for two different systems: (i) a centralized database serving
requests from a single node, and (ii) a parallel database,
where data is partitioned across multiple physical nodes.
The centralized database server used is PostgreSQL 8.3.7.
All experiments for this setting were run on an Ubuntu
Linux 9.04 machine, with an Intel Core Duo 3.16GHz CPU,
4GB of RAM, and an 160GB High Reliability SATA 3.0Gb/s
hard drive. For the parallel setting, we developed a sys-
tem composed of PostgreSQL nodes managed by Hadoop
(like [1]). The data is partitioned across the cluster nodes
and stored within local PostgreSQL instances. The Hadoop
MapReduce execution engine is used to relay commands and
(sub)queries to the individual nodes (implementation details
are in Appendix B.2). Our parallel system supports the join
paths discussed in Section 6. For the experimental evalua-
tion of the parallel setting, we used a Hadoop cluster with
16 nodes. Each node runs a Debian 5.0.2, has an Intel Xeon
2GHz CPU, 1.8GB RAM, and 30GB of local storage.

We used the TPC-H Benchmark with a scale factor of 10
and 50 for the centralized and parallel settings respectively.
Following directions from the TPC-H Standard Specifica-
tions [21], we partitioned the tables on primary and foreign
key columns creating multidimensional partitioning condi-
tions. Unless otherwise noted, the experimental results were
obtained using the partitioning schema presented in detail
in Appendix C, with each table split into 200 partitions.

7.1 Experimental Setup
For our evaluation, we categorized query optimizers into

three categories based on how they use partitioning infor-
mation to perform optimization:
1. Basic: These optimizers use partitioning only for per-

table partition pruning, not for join optimizations. The
default PostgreSQL optimizer falls in this category.

2. Intermediate: In addition to partition pruning, these op-
timizers generate one-to-one partition-wise joins given
the right conditions (see Section 2). This category rep-
resents the state-of-the-art techniques used by modern



Figure 5: (a) Execution times, (b) Optimization times, (c) Memory usage for TPC-H queries

optimizers (like Oracle [13], SQLServer [20]).
3. Advanced: Our two partition-aware query optimizers take

advantage of partitioning information to perform prun-
ing and join optimizations as described in the paper.

For the centralized setting, we implemented a representative
optimizer from each category using PostgreSQL’s optimizer
as the base. No robust open-source parallel optimizers are
available, so we developed an advanced-category parallel op-
timizer. We did not implement basic and intermediate paral-
lel optimizers. We compare the optimizers on three metrics
used to evaluate optimizers: (i) query execution time, (ii)
optimization time, and (iii) optimizer’s memory usage.

7.2 Overall Performance Results
Figure 5(a) shows the execution times for the plans se-

lected by the three query optimizers for ten TPC-H queries
in the centralized setting. (The results for the parallel op-
timizer are given in Section 7.6.) The Advanced optimizer
was able to generate a better plan than the other optimizers
for all queries, providing up to an order of magnitude benefit
for almost half of them.

We notice that the Basic and Intermediate optimizers pro-
duce the same plan in all cases, due to their inability to
perform any partition-wise optimizations. First, no TPC-H
query contains any filter predicates on the primary or foreign
keys, which are used as the partitioning keys. Therefore,
partition pruning is not an option for any optimizer (includ-
ing ours). Second, one-to-one partition-wise joins are not
possible because of the primary-foreign key relationships in
the TPC-H schema and the partitioning schema used. (A
more detailed explanation can be found in Appendix C).
However, the Advanced optimizer was still able to generate
partition-wise joins that joined clusters of partitions, leading
to plans with significant performance improvements.

Figure 5(b) presents the optimization times for the same
ten queries. The four queries in the middle of Figure 5(b)
have higher optimization times as they are the most com-
plex queries in the TPC-H benchmark. Note that extra op-
timization times of the Advanced optimizer over the other
optimizers is fairly low, and are definitely gained back during
execution as we can see by comparing the y-axes of Figures
5(a) and 5(b). The memory overhead introduced by our
approach is also low as shown in Figure 5(c). The average
extra memory overhead is around 14%, and the worse case
is 22%.

7.3 Effect of Query Size
Next, we study the effects on optimizer evaluation metrics

when the number of tables in the query is varied. The TPC-
H queries seen in Figure 5(a) join different numbers of tables.
However, most tables within a query are joined on different

keys, leading to the creation of a small number of one-to-
many or many-to-many partition-wise joins in each plan.
For instance, since join keys do not span more that three
columns, it is not possible to create four-way partition-wise
joins. (Appendix C provides a detailed explanation.)

The above real-life constraints of the TPC-H database
schema unfortunately limit our evaluation in two ways: (a)
restricting the evaluation of our approach against the Inter-
mediate optimizer which can exploit one-to-one partition-
wise joins only; and (i) restricting a stress-test of our ap-
proach. To address these issues, we created a synthetic par-
titioning schema where certain tables were vertically parti-
tioned into multiple tables. All tables were then partitioned
on a single attribute (the primary or the foreign key).

Figure 6(a) shows the execution times for 5 queries with
increasing number of tables. Once again, we see how the
Advanced optimizer was able to generate plans that are up
to an order of magnitude better compared to the plans se-
lected by the Basic optimizer. It is interesting to note that
as the number of tables in the query increases, the execu-
tion times for the plans from the Advanced optimizer barely
increase (due to efficient use of child joins); unlike the Basic
optimizer’s plans whose execution times increase drastically.
The Intermediate optimizer was able to take advantage of
the partitioning information since all tables were partitioned
in the same way. In this case, the Intermediate optimizer’s
plans were the same as the plans from the Advanced one.

Figures 6(b) and 6(c) show the optimization times and
memory consumption, respectively, as the number of tables
in the query increases. We note that both metrics increase
non-linearly for all three optimizers; but the increase is more
profound for the Intermediate and Advanced optimizers.
The increasing overhead is due to a non-linear complexity of
the path selection process used by the standard PostgreSQL
query optimizer. Our approach introduced about the same
overhead as the state-of-the-art optimizers did when im-
plementing their (limited) join optimization features. The
small additional overhead introduced by our approach is due
to the creation of PITs and join graphs.

7.4 Effect of Database Size
In this section, we evaluate the performance of the op-

timizers as we vary the database size in terms of (i) data
size, and (ii) the number of partitions created for each ta-
ble. We present the results from executing TPC-H query 3
using the default partitioning schema. The results for the
other queries are similar.

Figure 7(a) shows how the execution time of query 3 varies
when the amount of data stored in the database increases.
We observe that the execution times for the plans selected
by the Advanced optimizer increase very slowly. In con-



Figure 6: (a) Execution times, (b) Optimization times, (c) Memory usage for the stress-testing workload as
we vary the number of tables in the queries

Figure 7: (a) Execution times as we vary data sizes, (b) Optimization times, (c) Memory usage as we vary
the number of partitions per table for TPC-H query 3

trast, the execution times for the plans selected by the Ba-
sic and Intermediate optimizers increase rapidly as the data
size grows. Figure 7(a) shows that the benefits from our ap-
proach become more important for larger databases. Note
that optimization times and memory consumption are inde-
pendent of the database size.

Next, we fix the data size to 10GB and vary the number
of partitions for each table. Figure 7(b) shows the optimiza-
tion times taken by the three optimizers. Please note the
exponential scale for the number of partitions. As the num-
ber of partitions increases, so does the optimization time for
all optimizers. The relatively sharp increase in optimization
time for a large number of partitions is due to implementa-
tion inefficiencies of the PostgreSQL optimizer in handling
a large number of partitions. The small additional over-
head introduced by the Advanced optimizer is attributed
to the creation of the partition-wise joins, which in turn
are responsible for the great execution benefits seen in Fig-
ure 5(a). This trend is similar for the memory consumption
of the optimizers as seen in Figure 7(c). Varying the number
of partitions (with fixed data size) did not have a significant
effect on plan execution for any optimizer.

7.5 Effect of the Clustering Algorithm
The clustering algorithm is an essential phase in our over-

all partition-aware optimization approach. Figures 8(b) and
8(c) compare the optimization time and memory consump-
tion of the optimizer when clustering is enabled and dis-
abled. In both figures, we see a high overhead introduced
by disabling clustering, since the optimizer must generate
join paths for each child join produced by the matching
algorithm. When the matching output is one-to-many or
many-to-many, the number of such partition-wise joins in-
creases significantly, stressing the importance of clustering
to keep the search space to manageable levels.

Figure 8(a) shows the execution times for the plans gen-

Figure 9: Execution times for different join algo-
rithms as the percent of data collocation is varied

erated when enabling and disabling clustering. The “No
Matching, No Clustering” case is the Basic optimizer and
generates plans like P1 in Figure 2. The “Matching, No Clus-
tering” case generates plans that (intuitively) are a union of
all join pairs output by the matching phase (i.e., all join pairs
that can produce output tuples). In all cases, the plan gen-
erated without clustering is worse than the plan generated
when clustering is used. The “Matching, No Clustering”
case performs poorly. According to our partitioning schema
and the join conditions, most partition-wise joins are one-to-
many, i.e., the same partition joins with multiple partitions
from the other table. Hence, the “Matching, No Clustering”
plan may scan the same partition multiple times (in differ-
ent joins). We conclude that the use of clustering is very
important in order to find good execution plans.

7.6 Effect of Collocation in the Parallel System
We now evaluate the effectiveness of the advanced parallel

query optimizer using a simplified version of TPC-H query
4 (no aggregation). For comparison purposes, Figure 9 con-
siders four different combinations of the parallel join opera-
tors: (i) fully repartitioned - repartitioned join is used with-
out considering the partition locations; (ii) combination of



Figure 8: (a) Execution times, (b) Optimization times, (c) Memory usage for enabling and disabling clustering

collocated and repartitioned - all collocated partitions are
joined with collocated joins and the rest with repartitioned
joins; (iii) combination of collocated and directed - all collo-
cated partitions are joined with collocated joins and the rest
with directed joins; and (iv) our parallel optimizer’s choice.

We investigated the effect of the fraction of collocated
partitions for these four cases, and present the execution
times for each case in Figure 9. When the partitions are
fully collocated (100%), cases (ii), (iii) and (iv) take full ad-
vantage of the collocations and outperform the fully reparti-
tioned method. As the reader might expect, when the parti-
tion collocation decreases, case (ii)’s execution time becomes
closer to the fully repartitioned method. The good perfor-
mance obtained by case (iii) (which is what our optimizer
also selects) is in part due to the minimal movement of data
through the network to perform the joins.

The fully repartitioned join is suitable for any joins irre-
spective of whether the condition is part of the partitioning
columns or not. However, this ability comes with the price of
moving all the data over the network. Over the years, com-
mercial parallel RDBMS have used methods such as results
pipelining to speed up repartitioned joins. Currently, none
of these methods are supported by the Hadoop MapReduce
framework, which is also shown in a recent benchmarking
paper [14]. Despite the differences between the Hadoop-
based and commercial parallel DBMSs, both could benefit
from our partition-aware optimization techniques.

8. CONCLUSION
Query optimization technology has not kept pace with

the growing usage and user control over table partitioning.
We addressed this gap by developing new partition-aware
optimization techniques to generate efficient plans for SQL
queries. We made the following contributions:
• Our new techniques are designed for easy incorporation

into bottom-up query optimizers for both centralized and
parallel systems.

• We have prototyped these techniques in PostgreSQL and
in a parallel shared-nothing database system composed
of PostgreSQL nodes managed by Hadoop.

• An extensive evaluation showed that our optimizer, with
low optimization-time overhead, generates plans that are
often an order of magnitude better than plans produced
by current optimizers.
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Algorithm for performing the matching phase
Input: Table R, Table S, Join Condition
Output: Join Pairs (Ri,Sj)
For each (binary join predicate in Join Condition) {

Convert all partition conditions to intervals
Build PIT with intervals from partitions of R
Probe the PIT with intervals from partitions of S
Adjust matching result based on logical and or or

semantics of the Join Condition
}

Figure 10: Matching algorithm

APPENDIX
A. USES OF TABLE PARTITIONING

Table 1 summarizes various uses of partitioning in modern
database systems ranging from more efficient loading and
removal of data on a partition-by-partition basis (reducing
contention and improving data availability) to finer control
over the choice of physical design, statistics creation, and
storage provisioning based on the workload. The table also
lists whether the use benefits centralized database systems
in addition to parallel database systems. Most high-level
uses of table partitioning in modern database systems apply
irrespective of whether the system is centralized or parallel.

B. IMPLEMENTATION DETAILS
This section provides some insightful implementation de-

tails regarding the matching phase, as well as the implemen-
tation of our parallel system.

B.1 Details of the Matching Phase
Given the joining partitioned relations R and S, the goal

of the matching phase is to identify all partition-wise join
pairs (Ri, Sj) such that Ri ./ Sj can produce output tuples,
according to the join and partition conditions. Equivalently,
this algorithm can be used to prune out partition-wise joins
that cannot produce any results from all possible join pairs.

Figure 10 provides all the steps for the matching algo-
rithm. The input is the two tables to be joined and the join
condition. We will describe the algorithm using our run-
ning example from Section 1. The join condition for R ./ S
is a simple equality expression, R.a = S.a. Later, we will
discuss how the algorithm handles more complex conditions
involving logical and and or operators, as well an nonequi
join predicates. Since the matching phase is executed only if
the Applicability Test passes (see Section 3), the column at-
tributes R.a and S.a must appear in the partition conditions
for the partitions of R and S respectively.

The table with the smallest number of partitions is identi-
fied as the build relation and the other as the probe relation.
The conditions from the partitions of the build relation are
used to create a PIT. In our example, the PIT will contain
the intervals (0, 20] and (20, 40), which are associated with
partitions R1 and R2 respectively. The conditions from the
partitions of the probe relation S will be used to probe the
PIT and find the overlapping intervals. For example, when
the interval (0, 10] representing S1 is used to probe the PIT,
the result will be the partition R1, indicating that it is pos-
sible for R1 ./ S1 to produce output tuples.

Support for complex conditions: Before building and

probing the PIT, we need to convert conditions into inter-
vals. One or more interval will be created for each needed
table attribute that appears in the expression. A condi-
tion could be any expression involving logical ands, ors,
and binary expressions. Sub-expressions that are anded
together are used to build a single interval, whereas sub-
expressions that are ored together will produce multiple
intervals. For example, suppose the condition is R.a >
0ANDR.a ≤ 20. This will create the interval (0, 20]. The
condition R.a > 0ANDR.b > 5 will create the interval
(5,∞), since only R.a appears in the condition. The condi-
tion R.a < 0ORR.a > 10 will create the intervals (−∞, 0)
and (10,∞). If the particular condition does not involve
R.a, then the created interval is (−∞,∞), as any value for
R.a is possible.

Our approach can also support nonequi joins, for example
R.a < S.a. The PIT was adjusted in order to efficiently
find all intervals in the PIT that are to the left or to the
right of the provided interval. Suppose A = (A1, A2) is an
interval in the PIT and B = (B1, B2) is the probing interval.
The interval A is marked as an overlapping interval if it is
possible for A < B. Note that this is equivalent to finding
all intervals that overlap with the interval (−∞, B2).

Finally, we support complex join expressions involving
logical ands and ors. Suppose the join condition is (R.a =
S.a AND R.b = S.b). In this case, two PITs will be built;
one for R.a and one for R.b. After probing the two PITs,
we will get two sets of join pairs. We would then adjust
the pairs based on whether the join predicates are anded or
ored together. In the example above, suppose that based
on R.a, the partition R1 can join S1, and that based on Rb,
R1 can join both S1 and S2. Since the two binary join ex-
pressions are anded together, we induce that R1 can only
join S1. However, if the join predicate were (R.a = S.a OR
R.b = S.b), then we would induce that R1 can join both S1

and S2.

Complexity analysis: Building an PIT requires O(N ∗
logN) time, where N is the number of intervals. Assuming
each partition has a small, fixed number of intervals (which
is usually the case), N can also represent the number of par-
titions for the build relation. Probing a PIT with a single
interval takes O(min(N, k∗logN)) time, where k is the num-
ber of matching intervals. Hence, the overall time to iden-
tify all possible partition pairs is O(M ∗min(N, k∗ log(N))),
where M is the number of probing intervals.

The space overhead introduced by a PIT is the same
as any binary tree, that is θ(N). However, a PIT can be
reused multiple times during the optimization process. For
instance, suppose the join condition for tables R, S, and T is
R.a = S.aANDR.a = T.a. A PIT built for R.a can be used
for performing the matching algorithm when considering the
joins R ./ S, R ./ T , (R ./ S) ./ T , and (R ./ T ) ./ S.

B.2 Details of the Parallel System
Our parallel system consists of PostgreSQL nodes man-

aged by the Hadoop system. The data is stored in the local
PostgreSQL instance of each node and accessed through the
MapReduce framework. We implemented the join paths de-
scribed in Section 6 as follows:
• Collocated join path - the (sub)query representing the

collocated join is sent and executed by the local Post-
greSQL instance.

• Directed join path - the smaller join table is moved to



Use of Partitioning Use in Use in
Centralized Parallel
Databases? Databases?

Parallel access to data during query processing (e.g., parallel scans, partitioned parallelism) Possible Yes
Efficient elimination of access (pruning) to unneeded data during query processing Yes Yes
Reducing data contention during query processing and administrative tasks Yes Yes
Efficient and less-intrusive data loading and removal (for archival) Yes Yes
Faster and low-contention data backup Yes Yes
Efficient statistics maintenance in response to data insert/delete/update rates Yes Yes
Efficient table and index defragmentation Yes Yes
Enabling fine-grained control over physical design based on the workload Yes Yes
Selective storage of data on slower/faster disks based on importance and access rates Yes Yes
More accurate cardinality estimation during query optimization Yes Yes

Table 1: Uses of partitioning in centralized and parallel database management systems

the PostgreSQL instance containing the larger one and
the join is performed as collocated.

• Repartitioned join path - data is read from the database
tables and redistributed to the nodes performing the join,
using the MapReduce default hash partitioning.

We implemented these join paths in two MapReduce jobs,
called copy and join. The copy job consists of only a map
phase and is responsible for copying all the smaller relations
needed in the directed joins. Having a separate copy job for
the directed join performed better than doing the copying in
the join job, due to better network utilization. The copy job
is executed only when the plan contains at least one directed
join.

The join job consists of map and reduce phases, where the
reduce phase is executed only when the plan contains at least
one repartitioned join. In the map phase, the queries for the
collocated and directed paths are executed with the results
stored in the local PostgreSQL instances. For the reparti-
tioned join, the map reads the relation tuples and transmits
them to the reducers where the join is performed. The re-
sults produced from a repartitioned join are stored in the
reducers’ local PostgreSQL databases. To ensure that each
child join is executed only once, we instrumented Hadoop
to execute one mapper per each node.

Finally, we developed a bottom-up query optimizer for
our parallel system. Since no other query optimizer was
available, we only implemented an advanced partition-aware
query optimizer supporting all techniques introduced in this
paper; no basic or intermediate optimizer was built.

The optimizer is responsible for finding the best join path
for each join, by creating and costing the three available join
paths in the system. For the collocated joins and the join
part of the directed join, we used the cost model of the Post-
greSQL query optimizer. For the copy phase of the directed
join and the repartitioned join, we extended the cost models
of the PostgreSQL optimizer to include network transferring
costs and the cost of performing a join at multiple reducers.
In addition, we created a hinting mechanism that allowed
us to use our optimizer to create the different combinations
of parallel join operators used as part of our evaluation in
Section 7.6.

B.3 Impact on Accuracy of Cardinality Esti-
mation

In this section, we present an important benefit that child
joins bring, namely better cardinality estimation. Cardi-
nality estimation for filter and join conditions is based on
data-level statistics kept by the database system for each ta-
ble (e.g., distribution histograms, minimum and maximum

Figure 11: Cardinality estimations for the stress-
testing workload as we vary the number of tables in
a query

values, number of distinct values). For partitioned tables,
databases like Oracle and PostgreSQL collect statistics for
each individual partition. When the optimizer considers
joining unions of partitions, the estimates are made by ag-
gregating statistics over partitions.

This process however, can give inaccurate estimates since
many typical statistics kept by the system cannot be easily
or readily aggregated. For instance, estimating the number
of unique values for all partitions is not possible by simply
combining the number of unique values for each partition.
Inaccurate cardinality errors can often lead to sub-optimal
plan choices.

Figure 11 shows the cardinality estimates for the stress-
testing workload as we vary the number of tables in a query.
For the Basic Optimizer, we observe orders of magnitude in
cardinality errors. In contrast, partition-wise joins provide
much more accurate cardinality estimations as such joins in-
crease the chances of using partition-level statistics directly
for costing. The same pattern was observed with the default
partitioning schema and the TPC-H queries.

C. PARTITIONING SCHEMAS FOR THE
TPC-H DATABASE

In this section we will describe the motivation for the par-
titioning schema used for the TPC-H database, as well as the
implications of its use. According to the TPC-H Standard
Specifications [21], tables must be partitioned on primary
and foreign key columns. Considering that the join condi-
tions in most queries are equi joins over the primary and
foreign keys, partitioning on these columns is the natural
and correct choice.



Figure 12: Sample horizontal partitions of tables C,
O, and L

Table Partitioning Attributes

Customer c custkey (PK)
Part p partkey (PK)
Supplier s suppkey (PK)
Orders o orderkey (PK), o custkey (FK)
Partsupp ps partkey (PK,FK), ps suppkey (PK,FK)
Lineitem l orderkey (PK,FK), l partkey (FK), l suppkey (FK)

Table 2: Partition schema used for the TPC-H
database in our experimental evaluation

However, partitioning each table on a single column is not
an efficient option because most tables join with other tables
on multiple columns. We will explain the issue through the
use of an example. In the TPC-H schema, table customer
(C) has the primary key c custkey (C.ck), table orders
(O) has the primary key o orderkey (O.ok) and the for-
eign key o custkey (O.ck), and lineitem (L) has the foreign
key l orderkey (L.ok). The join condition for C ./ O is
C.ck = O.ck and for O ./ L is O.ok = L.ok. Suppose we
decide to partition C on C.ck and L on L.ok. The ques-
tion now is how do we partition O? If we partition O on
O.ck, then any join C ./ O will benefit from partition-wise
joins. However, queries that involve the join O ./ L will
not since the join condition O.ok = L.ok will not match the
partitioning key O.ck.

The solution is to create a two-dimensional partition for O
involving both attributes O.ok and O.ck. Hence, any query
involving the join C ./ O or O ./ L can take advantage of
partition-wise joins. It is important to note that this parti-
tioning is equivalent to partitioning O on O.ok and then par-
titioning each new partition on O.ck because the attributes
O.ok and O.ck are not correlated.

Figure 12 shows a simple partitioning scenario where we
created 3 partitions for C, 6 partitions for O, and 4 for L.
When a query involving C ./ O is optimized, our approach
will induce that C1 can only join with partitions O11 and
O12, C2 withs O21 and O22, and C3 with O31 and O32 (il-
lustrated using dotted lines in Figure 12).

Table 2 shows the actual partitioning schema we used for
our experimental evaluation. According to our partitioning
schema, 3 tables were partitioned on their primary key col-
umn, 2 tables where partitioned using two primary-foreign
key columns, and 1 table using three foreign-key columns.
Using multidimensional partitioning allowed us to maximize
the use of partition-wise joins across all TPC-H queries.

An important limitation of the TPC-H schema is the fact
that most tables join with other tables on different keys. For
example, table O joins C on ck but joins L on ok. Therefore,
it is very hard to create N-way partition-wise joins, where
N > 2. In fact, the only common join key across three
tables is partkey, which means it is not even possible to
create N-way partition-wise joins for N > 3, regardless of
the partitioning schema.

To alleviate the above limitations of the TPC-H database
schema, we decided to vertically partition tables lineitem,
part, and partsupp into two pieces each. Each vertical par-
tition retained the column partkey, which was then used to
horizontally partition the vertical partitions. This synthetic
partitioning schema allowed us to stress-test our approach as
well as to better evaluate our approach against the other op-
timizers, since we were able to create queries involving up to
6-way one-to-one partitions-wise joins. This simple exercise
also demonstrates the seamless integration of our approach
with systems that support row-stored vertical partitioning.


