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Embeddability of Weighted Graphs in k-Space is Strongly NP-Hard
(Extended Summary)!
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Abstract-~In this paper we investigate the complexity of embedding edge
graphs into Euclidean spaces: Given an (incomplete) edge-weighted graph,
vertices of G be mapped to points in Euclidean k-space in such a way tha
vertices connected by an edge are mapped to points whose distance is e
weight of the edge? We prove that the preceding problem is NP-Hard (b
from 3-Satisfiability), even when k=1 and the edge weights are restricted to
values | and 2. Related results are shown for the problem of testing the un
a known embedding and for variations involving inexact edge weights,
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1. Introduction

In many applications of distributed sensor networks? there afises the problem of
determining the locations of sensors from incomplete (and possibly errorful) information
about their distances from each other and from fixed landmarks. This prompts us to ask
the following geometric questions: '

-Given an incompletely specified distance matrix for a set of points in
k-space,® when is the complete distance matrix uniquely determined?

-Assuming the disiance matrix to be uniquely determined, what is the
computational complexity of actually finding the unspecified distances?

In this paper we consider the closely related problem of embeddabllitys:

-Given a (purported) incompletely specified distance matrix for a set of
points in. k-space, determine whether there can actually exist a set of
points satisfying that matrix.

In Section 2 we introduce definitions that will allow us to phrase several forms of the
embeddability problem in terms of edge-weighted graphs. In Section 3, we give a simple
proof that a 1-dimensional version of the embeddability problem is NP-Complete. In
Section 4, we show the more difficult and surprising result that this same 1-dimensional
problem is strongly NP-Complete in the sense of Garey and Johnson [1979] and extend

lln order fo meet the space constraints of lhese Procecdings, a number of delails have been omitied from this
paper, perticularly in the proofs of the resulls presenled in Sections 5 and 8. The complete peper will be
available as a Carnegie-Mellon University Computer Science Depariment report of this same title. This ressarch
was supported in part by the Office of Naval Ressarch under Contract NOOO14-76-C-0370.

ZSee, for example, Distributed Sensor Nets [1978].

sFor practical purposes the most inferesting cases are k=2 and ka3
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result to higher dimensions. In Section 5 we address some naturally arising
:;ussﬁon5 concerning the suitability of the Turing Machine model for a problem that
:i;,e,grenfly involves real numbers, and show that the proofs used in Section 4 have
,_;:evaﬂce to an "approximate embeddability” problem on the reals. In Section 6 we
Id:scuss versions of the problem in which one way to complete an incompletely specified
ance matrix is known and it is desired to determine whether a second solution exists.
chow that these versions are no easier than corresponding versions studied earlier-
Finally, the conlributions of the paper are summarized in Section 7.

d:';l

We
in the paper.

2. Fundamental Concepts

We begin by introducing the concepts of weighted graph and embedding:

inifions:
gfj"i;;fahlnd graph, G = <V,E,W>, is an ordered triple such that each element of E is
an unordered pair of distinct elements of V and W is a function mapping E into
[0,0). The elemenis of V are called the vertices of G. The elements of E are called
the edges of G. For each edge, e, of G, the real number W(e) is called the weight

of e in G {or simply the weight of e).

Definitions:
tet G = <V,EW> be a weighted graph, and let k be a positive integer. Then an
embedding, of G in k-space is a function, f, mapping V into the k-dimensional
Euclidean space, R¥, such that, for each edze, e = {fv,w}, of G, [{(v)-f{w)] = W(e). G

embedding of G in k-space.

For any positive integer, k, the problem of k-embeddability may now be stated as
follows: - oy

Prablem (k-Embeddability): »
Given an arbitrary weighted graph, G, determine whether G is k-embeddable.

In Sections 3 and 4 we will wish to restrict the class of weighted graphs under
consideration, so that the notion of NP-Completeness (which is defined in terms of
Turing machines) will make sense in relation to -Embeddability. We therefore introduce
the following definition,

Definition:
Let S be any subset of [0,0). Then, an S-weighted graph is a weighted graph, G,
such that the weight of each edge of G is an element of S. We will generally refer
to Z*-weighted graphs as integer-weighted graphs.

In Section 5 we will return to the question of graphs with real edge weights.

3. The Weak NP-Complcicness of 1-Embeddability

In this section, we demonstrate the weak NP-Completeness of the problem of
1-Erabeddability of integer-weighted graphs. To do this, we first show constructively
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that L-Embeddability is in NP.

We then use a reduction from Partitiond to sho
completeness., W

Theorer 3.1:
1-Embeddability of integer-weighted graphs is in NP,

Proof:
To check the l-embeddability of

any integer-weighted graph, a NDTM need only

L. Partition the graph into disjoint connected subgraphs,
2. Guess the direction of each edge of the graph, and
3. Check the consistency of each disjoint connected subgraph.

These operations can clearly be carried out in (nondederministic) polynomia| time
0

Theorem 3.2:

1-Embeddability of integer-weighted graphs is NP-Complete.

Proof:2

We will show the NP-Completeness of I-Embeddability by reduction from Partition,
Let S = {a), a5, ..., a,} be a multiset of pasitive integers. In polynomial time we

may construct from S 3 description of the cyclic graph G = <V,E\W> whose edge
weights are the 3;, that is

V={V0,...
E =
W=

] Vn_l E: i

WViV(i+1 mod n)i | 0si<n}, and

{ViV(ie1 mod nyhap | Ogi<n).

If fis an embedding of G in the line, then the multisets
Sl = {a‘ ] f(VI-) < f(\"‘H_l mod n))} and “
Sy = i3 | f{v;) > f(V(“_l mod n))I

con

stitute a partition of S into two pieces whose ‘sums are

equal. Similarly, any
such partition of S yields a 1-Embedding of G. O

4%ho Parfition prablem calls for partitioning a (multi-)set of integers into two subset

s with equal sums, and is
known to be NP-Complate; see Garey and Johnson [1979]

5The construction used in this theorem and that used in the proof of Lemma 4.4 were independenty developed
by Yemini [1978], who used them to show the {(weak) NP-Completoness of 2-Embeddability of integer-weighted
graphs, 4
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¢ an integer-weighted graph is embeddable in the line remains NP-Complete even

whethe . :
e edge weights are resiricted to be no greater than four.
rheorem 1 N T, .

] -Embeddability of 11,2,3,4}-weighted graphs is NP-Complete.
?r00f56

— our proof consists of a reduction from 3-Satisfiability {which was shown to be
nP-Coraplete by Cook [1971]) to 1-Embeddability of {1,23,4}-weighted graphs. Let
E be any Boolean expression in conjunctive normal form with three literals in each
clause. Our goal will be to construct a [1,2,3,4}-weighted graph, G, which is
embeddable iff E is satisfiable. We let n be the number of variables occurring in E
and ra be the number of clauses in E. Throughout this proof, we will use the
convention that the variables of E will be indexed by "i" {which will therefore range
from 1 through n), the clauses of E will be indexed by *j* (ranging from 1 through
m), and the literals within each clause will be indexed by "k" {(ranging from 1
through 3). Thus E has the form

e= Il g

1<jsm

where each clause, Cj, has the form

CJ' = Z L},k’
1<k=3

and each literal, Lj,k* has the form

Lix =% or Lix=X o
for some i, 1sisn. We will also use throughout the proof the convention that "f"
represents a hypolhelical 1-embedding of G (or of the part of G we have

constructed so far).

To construct G, we will use the “building blocks" shown in Figure 4.1. We begin
with the subgraph shown in Figure A.1(a). We assume without loss of generality
that f(A) = O and f(B) = 2. This assumption constrains f to assign each of the X
(which we icentify with the variables of E) to 1 or -1 {which we identify with the
Boolean valves TRUE and FALSE, respectively). Note that each possible mapping of
the X; into {1,-1} corresponds 10 some assignment of truth values to the X;. In the
remaining sleps of the construction, we will add edges which have precisely the
effect of constraining f to map the’ X; to {1,-1} in such a way that the

corresponding assignment of the X; satisfies E.

Sanother NP-Complele problem involving a form of graph ombedding i
Papadimitriou [1976]). In the full paper we will also exhibit a re
Embeddability.  This reduction will suffico to show the strong
integer-weighted Graphs, although it is somewhat less aconomical than the construction given here.
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The next step in our construction is to augment G by adding the edges sho
Figure 4.1(b) for each i, l<icn. The heavy lines in that figure rep
already-existing edges. We now have vertices )-(i such that for each variab|
maps X; to 1 (TRUE]_ itf it maps X; to -1 (FALSE), and vice-versa. The POssible
mappings from {X;Ju{X;} to {1,-1} under f now correspond precisely to the POssiblg
(consistent) truth assignments of the X; and X;, but still without regard to whethe,
those assignments satisfy E.

A2 B
X, X, X, X, 2 X

(a) Implementation of variables. (b) Implementation of a negative literal,

wWn in
rESenl
e, )(i, ¢

(c) Implerentation of a disjunctive clause.

Figure 4.1 Building blocks for transtorming an expression in 3-DNF to a graph.

For the final step of our construction, we add the edges indicated in Figure 4.1(c)
for each j, 1<jsm. The vertices "j,k are identified with the X; and ii precisely as
the corresponding literals, L',k' are formally identical with the X; and )'<i. Orice
again, the heavy lines indicate edges which were present at'earlier stages of the
construction. Careful study of the graph in Figure 4.1(c) will reveal that it is
impossible to embed it in the line in such a way that A is sent to 0, B is sent to 2,
and all three of the L. k are sent to -1 (FALSE), but if one or more of the Lj,k are
to be sent to 1 (TRUE}. then an embedding is possible (in fact, exactly one such
embedding is possible). Thus, for each j, 1<j<m, the effect of the edges in-Figure
4.1{c) is precisely to constrain f to map the Xj to {1,-1} in such a way that the
corresponding truth -assignment for the X; satisfies clause C;‘-

The effect of all the edges of G is therefore to constrain f to map the X; to {1,-1}
in such a way that the corresponding assignment of truth values to the X; satisfies
E. If there is no such assignment then G is not l-embeddable. If there are any
assignments satisfying £, then for each such assighment G can be (uniquely)
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1_embedded by a function sending A to O and B to 2 and mapping the X; to {1,-1}
in accordance with that assignment.  Finally, it is clear that the preceding
cong{ruc!icn can be carried out in polynomial time. This completes the proof. O

reference, we note that the consiruction used in the preceding proof is

For future : ;
ch that the { -embeddings of G are in one-to-one correspondence {up to translation
sud reflection) with the truth assignments that satisfy E. ‘We note also that the
- rm immediately yields the following result:

preceding theore

coroliary. 4.2: ) _
I_Embeddabiiity of integér-weighted graphs is strongly NP-Complete.

slation of a sequence of numbers in {1,2,3,4} from

ProO[‘.
lished in linear time and causes only a constant

Tt suffices to note that tran

pinary to unary can be accomp
factor increase in the length of the input. O

We may also immediately derive:

corollary. 4.8:

1-Embeddabiiity of {1,2}-weighted graphs is NP-Complete.

Proof:
Consider
and 4 with configurations

{l,2,3,4}-weighted graph, G, to a {1,2}
G is 1-embeddable. O

the graphs shown in Figure 42. By replacing single edges of weights 3
T4 and Ta respectively, we can reduce any
-weighted graph, H, that is 1-embeddable iff

4.2. Building long "edges" from short edges.

Figure
onstructed will be k-embeddable

k, the graph Hso ¢

In fact, for any positive integer,
this fact to prove our next lemma.

iff G is k-embeddable. We may use
il
L

R 3| g Ry 3| ¢ 3 s B

4

Figure 4.3. Gadgets for adding a dimension.

Lemma 4.4:

For every positive integer, k, k-Embeddability of {1,2}-weighted graphs is NP-Hard.
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Proof:

Consider the graphs shown in Figure 43. Given any {1,2}-weighted graph, g
edge of G having weight | may be replaced by the Rl and each edge of Weight

by R2, yeilding a graph, H, which, for any positive integer, k, is e"‘beddab“le .2
(h+1)-space iff G is embeddable in k-space. By the methods of Theorem 43 "
be transformed into a {1,2}-weighted graph, J, that is embeddable in
those spaces in which H is embeddable. The transformation from g to J
only a constant factor increase in the length of a specification of the graph
clearly be accomplished in polynomial time. It follows by mathematical ;
that, for any positive integer, k, L-Embeddability is polynomial-time reg
k-Erbeddability for {1,2}-weighted graphs. O

' Bach

s H mg
Fecisg|
iNVolygs
and tan
“ductiun
ucible t,

Once again, we note that the (k+1}-embeddings of J will

correspondence (up to rotation and reflection) with the k-embeddi
Theorem 4.4 gives us the following result,

be in one-to-gne
ngs of G Fina]ly'

Coro.llarx 45:

Let k be any positive inteser. Then k-Embeddability of integer

“weighted graphs i
strongly NP-Hard,

Proof:
This result follows
Corollary 4.2. O

from Lemma 4.4 and the same reasoning used in the proof of

5. Graphs with Real-Valued Edge Weights

We will now discuss the applicability of NP-Completeness to problems whose inputs
are real numbers in general, and to embedding problems in particular. A number of

reasons for doubting the relevance of the Turing Machine model seem naturally to
present themselves,

-NP-Corapleteness is defined for language reco
Machines, which inherently can deal only w
arbitrary reals.

gnition problems on’ Turing
ith integers and not™ with

-Given a "random" embedding of an unweighted graph into a Euclidean space,

any two of the edge weights induced by the embeddirg will be
incommensurable  with probability 1. Moreover, if the graph is
overconstrained and the dimension of the

space is at least two, then
rounding the induced edge-weights to multiples of some small distance will

almost always produce 2 weighted graph that is not embeddable in the
space.

In order to deal with these issues, we introduce the notion of approximate embeddings.

Definitions.

Let G be a weig

hted graph and € be a positive real number. Then an €-approximate
k-embedding

of G is a function, f, that maps the vertices of G into Euclidean
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k-space such that for cvery edse, {uv}, of G, 1-€ < [Hu)-F(v)|/W({uv}) < 1+& If such
 embedding exists, then G is said to be ¢-approximately k-embeddable.

a

sitive integer, k, and two reals, ¢ and €5, such that 0 < ¢; < &5, we may

Given 2 PO
following more "robust” embeddability problem:

aow define the
w(él'GZ_AppfOKimate k-Embeddability):
Given a weighted graph, G, assert correctly either (1) that G is €>-approximately
k-embeddable (this is called accepting G) or (2) that G is not €;-approximately
k-embeddable {this is called rejecting G).

Note that if the least ¢ for which G is €-approximately k-Embeddable lies in the
terval [€1,€2) then it is permissible either to accept or to reject G. In this problem
definition, we have atterpted to capture, without introducing inordinately many
complexities of detail, the essential problem of embedding as it would apply to real
computers given incxact data.

We now wish to investigate the computational complexily of el,ezwAppmximate
Embeddability problems. Is it possible, for example, to solve all such problems in time
polynomial in the size of a specification of G (where the degree of the polynomial, or
even just the “constant” factor, depends on (62-61}'1)?

It turns out that such polynamial solutions are not possible in the general case
(assuraing that P # NP). In particular, we have the following resuit.

Theorem 5.1:
1/18,1/9-Approximate 1-Embeddability of integer-weighted graphs is NP-Complete.

Sketch of Proof:
We note that the embeddability properties of the graphs used in the proof of

Theorem 4.1 depend only on cycles of length no greater than 16 having edges
whose lengths are multiples of 1. It follows from this that for such graphs

¢-Approximate 1-Erabeddability is equivalent to ordinary 1-embedability for any € <
1/8, and the desired resull is at hand. O

It is interesting to note that Approximate 1-Embeddability problems restricted to
araphs consisting of a sinsle cycle {(such as were used in the proof of Theorem 3.2) are
always solvable in polynormial tire.” This shows that the weak NP-Completeness result
given in Section 3 does not say all there was to say about the difficulty of the practical
(ie., with inexact data, etc.) form of the problem. Loosely speaking, we could say that
we have shown the notion of strong vs. weak NP-Completeness to be significant even
for problems that naturally invelve reals rather than integers. It should be noted,
however, that Theorem 5.1 followed not from Theorem 4.4 but rather from the particular

construction used in the proof of Theorem 4.4.

[ ?This follows from the existonce of fasl approximation algorithms for Partition. See, for example, Lawler
1977).

487




1

6. Ambiguous Embedding Problems

Another wvariation on the embeddability problem that may arise in Practic
applications is that of "ambiguity of solution." Given an incomplete weighted graph aal
some embedding of that graph into a Euclidean space, we may wish to know whether
given into a Euclidean space, we may wish to know whether the given embedding |
Unique‘s To pose the problem more precisely, we introduce the following definitions, :

Definitions:
Let G be a weighted graph and k be a posifive integer. Then two k-ernbecldings {
and g, of G are said to be congruent iff for each two vertices, u and v, o |
If(u)-f(v)] = lg(u)-g(v)l. A k-embedding, f, of G is said to be unique (up to
congruence) iff every k-embedding of G is congruent to f, and in this case G i said
to be uniguely k-embeddable. If G has two or more non-congruent k-embeddings
then G is ambiguously k-embeddable. !

For any positive integer, k, we may now define the problem of Ambiguoys
k-Embedding as follows:

Problem (Ambiguous k-Embedding):
Given a weighted graph, G, and a k-embedding, f, of G, determine whether g j;
ambiguously k-embeddable (i.e, whether there exists a k-embedding of G which i
not congruent to f).

In the full paper, we will show that Ambiguous k-Embeddability is (strongly) NP-Harg
for all positive k and that it is NP-Complete for k=1. Here we have space only for 4
brief overview of the steps of the proof, which go as follows:

1. We define Ambiguous 3-Satisfiability and Ambiguous 4-Satisfiability in a
manner analogous to the definition of Ambiguous k-Embedding.

2. We show the NP-Completeness of Ambiguous 4-Satisfiability by reduction
from 3-Satisfiability.

3. We show the NP-Completeness of Ambiguous 3-Satisfiability by. reduction
from Ambiguous 4-Satisfiability. Mg e

(-3
4, We show the (strong) NP-Completeness of Ambiguous 1-Embedding by
reductiion for Ambiguous 3-Satisfiability, using the fact that the
construction used in the proof of Theorem 4.1 "preserves uniqueness” (up
to congruence).

5. We show the (strong) NP-Hardness of Ambiguous k-Embedding for k>1 by
reduction from Ambiguous {(k-1)-Embedding.

7. Conclusions

The results of this paper fall into two classes, those of interest to persons concerned
with embedding problems (such as the sensor positioning problem) and those that are of
more general theoretical interest. To those concerned with finding efficient solutions to
the Embedding problem (given a weighted graph, find "the™ embedding), these results

8ar example, are the nodes of our sensor nelwork really where we think they ave, or might they be in some
very different configuration?
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are, or might thay be in some {

what all NP-Completeness results say: “You are trying to solve the wrong problem.”
-;a)‘(her than looking for an efficient worst-case algorithm, it would be more promising to
R x an algorithm that gives good performance in cases which arise in practice (for
seempm, cases in which the graph is highly overconstrained). Pursuing this topic, in the
eil? paper we will discuss a linear-time algorithm due to Shamaos [1978] for determining
fuhether a given complete graph is k-embeddable (for any fixed k). His algorithm
:;wmeg a model in which real arithmetic operations can be performed in constant time.

The most specific result of theoretical interest is our discovery of some new strongly
Np-Hard geometric problems, and our use of some interesting gadgets to carry out the
proofs of NP-Hardness. Of more general interest are the two new classes of problems
introduced in Sections 5 and 6. The "¢j,ep-approximate” problems introduced in Section
5 offer 8 new way of looking at the notion of NP-Completeness in the context of
problems involving continuous variables. As we have seen, weak NP-Completeness may
not say all there is to say in this context. "Ambiguous solution” problems address the
question of determining whether a known solution to a problem is in fact the unique
solution. In Section 6, we exhibited a fundamental NP-Complete problem, 3-Satisfiabilty,
whose ambiguous version is alsa NP-Complete, and exhibited a method for obtaining new
NP-Completeness results for such ambiguous solution problems, namely the use of
reductions that preserve uniquenes of solution.
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