
Kinematics −− the study of motion without
regard to the forces that cause it.

Inverse: α,β = f (A)
−1

A

Forward: A= f(α,β)

α

β

specify fewer degrees of freedom

more intuitive control of dof
contact with the environment

draw graphics

calculate desired joint angles for
control

User Control of Kinematic Characters
Joint Space

position all joints−−fine level of control

Cartesian Space
specify environmental interactions easily
most dof computed automatically

Forward Kinematics

L1

L2

θ1

θ2

x = L cos θ + L cos (θ + θ) 1 1 2 1 2
y = L sin θ + L sin (θ + θ) 1 1 2 1 2

x 0
y 0
z 0
1 1

=

= trans L1rot θ1 rot θ2
trans L

2

Inverse Kinematics
balance −− keep center−of−mass over

support polygon

control −−position vaulter’s hands on
line between shoulder and vault

control −−compute knee angles that
will give the runner the right leg length

Inverse Kinematics

 θ = f (x) −1

 θ = −(L sinθ)x + (L + L cos θ)y 1 2 2 1 2 2

(L sinθ)y + (L + L cosθ)x2 2 1 2 2

 θ = cos (x + y − L − L) 2 1 2
 2 2 2 2

2 L L1 2

L1

L2

θ1

θ2

What makes IK hard?What makes IK hard? −− many dof

12 equations, 6 unknowns (θ
1
,...θ6)

=

xx yx zx px

0 0 0 1

xy yy zy py

xz yz zz pz

only 3 of the 9 rotation terms are independent

non−linear, transcendantal equations

ax bx cx dx

0 0 0 1

ay by cy dy

az bz cz dz

a,b,c,d are functions of (θ1,...θ6)
x,y,z,p are desired orientation, position of
end effector

Add constraints to reduce redundancies

a subspace {θ } defined byx

θ(θ ,...,θ) ε θ if f(θ) = X1 n x

What makes IK hard? −− Redundancy

Choose solution that is
"closest" to current configuration

move outermost links the most

energy minimization

minimum time

What makes IK hard? −− singularities

ill−conditioned near singularities

high state space velocities for
low cartesian velocities

What makes IK hard?
goal of "natural looking" motion

minimum jerk

equilibrium point trajectories

The Jacobian

Jacobian is the n x m matrix relating differential
changes of θ (dθ) to differential changes of x (dx)

f(θ) = x x is of dimension n (generally 6)
θ is of dimension m (# of dof)

J(θ) dθ = dx where the ijth element of J is

Jij = δfi
δxj

Jacobian maps velocities in state space to
velocities in cartesian space

Solutions

Methods

no solution (outside workspace, too few dof)
multiple solutions (redundancy)
single solution

closed form
iterative

IK and the Jacobian

θ = f−1(x)

dx = J dθ

dθ = J
−1

 dx

x

x+dx

x
goal

θk+1= θk + ∆t J
−1

 dx

linearize about θk

Inverting the Jacobian
J is n x m−− not square in general

compute pseudo−inverse

Singularities cause the rank of the
Jacobian to change

Damped Least Squares:
find solution that minimizes

||J − dx||2 + λ2||dθ||2

tracking error + joint velocities

Non−linear Optimization
Zhao and Badler, TOG 1994

solution is a (local) minima of some
non−linear function

objective function

constraints

non−linear optimization routine

Objective Function

position and orientation of end effector

P(x) = (p − x)2

xP(r) = 2(x−p)

or just position, or just orientation,
or aiming at

Formulation

minimize G(θ)
subject to aiθ = bi

aiθ < bi

Solution
G(θ) and G(θ)
use a standard numerical technique to solve

