Kinematics -- the study of motion without regard to the forces that cause it.

Forward: $\quad \mathbf{A}=\mathbf{f}(\alpha, \beta)$ draw graphics

Inverse: $\alpha, \beta=\mathbf{f}^{-1}(A)$
specify fewer degrees of freedom
more intuitive control of dof contact with the environment
calculate desired joint angles for control

User Control of Kinematic Characters

Joint Space

position all joints--fine level of control
Cartesian Space
specify environmental interactions easily most dof computed automatically

Forward Kinematics

$$
\begin{aligned}
& \mathbf{x}=\mathbf{L}_{1} \cos \theta_{1}+\mathbf{L}_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& \mathbf{y}=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
& {\left[\begin{array}{l}
\mathbf{x} \\
y \\
z \\
1
\end{array}\right]=} {\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Inverse Kinematics

balance -- keep center-of-mass over support polygon
control --position vaulter's hands on line between shoulder and vault
control --compute knee angles that will give the runner the right leg length

Inverse Kinematics

$$
\begin{aligned}
& \theta_{2}=\frac{\cos \left(\mathbf{x}^{2}+\mathbf{y}^{2}-\mathbf{L}_{1}^{2}-\mathbf{L}_{2}^{2}\right)}{2 \mathbf{L}_{1} \mathbf{L}_{2}} \\
& \theta_{1}=\frac{-\left(\mathbf{L}_{2} \sin \theta_{2}\right) \mathbf{x}+\left(\mathbf{L}_{1}+\mathbf{L}_{2} \cos \theta_{2}\right) \mathbf{y}}{\left(\mathbf{L}_{2} \sin \theta_{2}\right) \mathbf{y}+\left(\mathbf{L}_{1}+\mathbf{L}_{2} \cos \theta_{2}\right) \mathbf{x}} \\
& \theta=\mathbf{f}^{-1}(\mathbf{x})
\end{aligned}
$$

What makes IK hard? -- many dof

$$
\left[\begin{array}{llll}
\mathrm{x}_{\mathrm{x}} & \mathrm{y}_{\mathrm{x}} & \mathrm{z}_{\mathrm{x}} & \mathrm{p}_{\mathrm{x}} \\
\mathrm{x}_{\mathrm{y}} & \mathrm{y}_{\mathrm{y}} & \mathrm{z}_{\mathrm{y}} & \mathrm{p}_{\mathrm{y}} \\
\mathrm{x}_{\mathrm{z}} & \mathrm{y}_{\mathrm{z}} & \mathrm{z}_{\mathrm{z}} & \mathrm{p}_{\mathrm{z}} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{a}_{\mathrm{x}} & \mathrm{~b}_{\mathrm{x}} & \mathrm{c}_{\mathrm{x}} & \mathrm{~d}_{\mathrm{x}} \\
\mathrm{a}_{\mathrm{y}} & \mathrm{~b}_{\mathrm{y}} & \mathrm{c}_{\mathrm{y}} & \mathrm{~d}_{\mathrm{y}} \\
\mathrm{a}_{\mathrm{z}} & \mathrm{~b}_{\mathrm{z}} & \mathrm{c}_{\mathrm{z}} & \mathrm{~d}_{\mathrm{z}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

a,b,c,d are functions of $\left(\theta_{1}, \ldots \theta_{6}\right)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}$ are desired orientation, position of end effector
12 equations, 6 unknowns $\left(\theta_{1}, \ldots \theta_{6}\right)$
only 3 of the 9 rotation terms are independent non-linear, transcendantal equations

What makes IK hard? -- Redundancy

a subspace $\left\{\theta_{\mathrm{x}}\right\}$ defined by
$\theta\left(\theta_{1}, \ldots, \theta_{\mathrm{n}}\right) \varepsilon \theta_{\mathrm{x}}$ if $\mathrm{f}(\theta)=\mathrm{X}$
Add constraints to reduce redundancies

Choose solution that is

"closest" to current configuration
move outermost links the most
energy minimization
minimum time

What makes IK hard? -- singularities

ill-conditioned near singularities
high state space velocities for low cartesian velocities

What makes IK hard?

goal of "natural looking" motion minimum jerk equilibrium point trajectories

The Jacobian

$$
\begin{array}{ll}
f(\theta)=x & x \text { is of dimension } n \text { (generally } 6) \\
& \theta \text { is of dimension } m \text { (\# of dof) }
\end{array}
$$

Jacobian is the $\mathrm{n} \times \mathrm{m}$ matrix relating differential changes of $\theta(d \theta)$ to differential changes of $x(d x)$
$J(\theta) d \theta=d x$ where the ijth element of J is

$$
\mathrm{J}_{\mathrm{ij}}=\frac{\delta \mathrm{f}_{\mathrm{i}}}{\delta \mathrm{x}_{\mathrm{j}}}
$$

Jacobian maps velocities in state space to velocities in cartesian space

Solutions

no solution (outside workspace, too few dof) multiple solutions (redundancy)
single solution

Methods

closed form
iterative

IK and the Jacobian

$$
\begin{aligned}
& \theta=\mathrm{f}^{-1}(\mathrm{x}) \\
& \mathrm{dx}=\mathrm{Jd} \theta \\
& \mathrm{~d} \theta=\mathrm{J}^{-1} \mathrm{dx}
\end{aligned}
$$

$$
\theta_{\mathrm{k}+1}=\theta_{\mathrm{k}}+\Delta \mathrm{t} \mathrm{~J}^{-1} \mathrm{dx}
$$

linearize about θ_{k}

Inverting the Jacobian

J is $\mathbf{n \times m - - ~ n o t ~ s q u a r e ~ i n ~ g e n e r a l ~}$ compute pseudo-inverse

Singularities cause the rank of the Jacobian to change

Damped Least Squares:
find solution that minimizes

$$
\begin{aligned}
& \|\mathrm{J}-\mathrm{dx}\|^{2}+\lambda^{2}\|\mathrm{~d} \theta\|^{2} \\
& \text { tracking error }+ \text { joint velocities }
\end{aligned}
$$

Non-linear Optimization

Zhao and Badler, TOG 1994
solution is a (local) minima of some non-linear function
objective function
constraints
non-linear optimization routine

Objective Function

position and orientation of end effector

$$
\begin{gathered}
\mathrm{P}(\mathrm{x})=(\mathrm{p}-\mathrm{x})^{2} \\
\nabla_{\mathrm{x}} \mathrm{P}(\mathrm{r})=2(\mathrm{x}-\mathrm{p})
\end{gathered}
$$

or just position, or just orientation, or aiming at

Formulation

minimize $G(\theta)$
subject to $a_{i} \theta=b_{i}$

$$
\mathrm{a}_{\mathrm{i}} \theta<\mathrm{b}_{\mathrm{i}}
$$

Solution

$G(\theta)$ and $\nabla G(\theta)$
use a standard numerical technique to solve

