What is Motion Capture?

capture of motion of (human) actor whole body upper body face

more generally...

one way of using a physical device to control animation

puppeteering exoskeletons discrete sensors on actors

Applications

movies tv shows video games performance animation

Sauta M

Motion Capture

What do we need to know?

x, y, z pitch, roll, yaw

Errors cause joints to come apart links to grow/shrink bad contact points

Sampling Rate and Accuracy

How to use the data?

off-line
filtering, IK
libraries of motion trajectories
choose among them
switch between them
modify

on-line

driving character directly based on what actor does in real time

History

recording motion for biomechanics
high accuracy
fewer recorded points
hand digitizing film
supplement with force plate, foot switches

robot measurements Selspot LED system

VR tracking technology less accuracy fewer sensors

Technology--optical

passive reflection—Peak hand or semi-automatically digitized time consuming

no glossy or reflective materials tight clothing occlusion of markers by props or limbs

higher frames/second

Technology--optical

passive reflection--Acclaim, Motion Analysis,...

automatically digitized

240 Hz

not real-time

3 markers/body part for 6 dof

2+ cameras for 3d position data

~\$100K

Technology--optical

active light sources -- Optotrak

automatically digitized correspondence 256 markers 3,500 markers/second

Technology--magnetic

electromechanical transducers

Ascension flock of birds Polhemus Fastrak

limited range/resolution pigtail (new wireless system) metal in the environment (treadmill, rebar!) no identification problem 6 dof information realtime low frequency: 30 to 120 Hz few markers: 10-20 \$40K

Technology--mechanical

mechanical motion capture

dataglove

low accuracy focused resolution recognize gestures

monkey

high accuracy high data rate not realistic motion hire animator

Technology-mechanical

exoskeleton + angle sensors Analogous

pigtail no identification problem realtime high frequency: 500Hz not range limited fit rigid body approximation

Technology Issues:

resolution/range of motion
calibration
accuracy
marker movement/placement
sensor noise
skew in measurement time
restrictions on the environment

restrictions on the environment occlusion/correspondence

Technology Issues:

resolution/range of motion

calibration

accuracy

marker movement sensor noise skew in measurement time restrictions on the environment frame rate

occlusion/correspondence

Resolution

positioning of camera

Calibration

internal camera parameters

optical distortion of lens

external parameters

position and orientation

correlation between multiple cameras

Marker Placement

location should move rigidly with joint

stay away from bulging muscles

shoulders: skeletal motion not closely tied to motion on skin

Calibration zero position fine calibration by hand

Accuracy

marker movement sensor noise skew in measurement time

filtering (requires high data rate)

Model-based Techniques

restricted search space for markers

objects don't pass through each other

no infinite accelerations model of bodies for occlusion