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Abstract

High-throughput, data-directed computational protocols for Structural Genomics (or Proteomics) are
required in order to evaluate the protein products of genes for structure and function at rates compa-
rable to current gene-sequencing technology. This paper presents the Jigsaw algorithm, a novel high-
throughput, automated approach to protein structure characterization with nuclear magnetic resonance
(NMR). Jigsaw applies graph algorithms and probabilistic reasoning techniques, enforcing first-principles
consistency rules in order to overcome a 5-10% signal-to-noise ratio. It consists of two main components:
(1) graph-based secondary structure pattern identification in unassigned heteronuclear NMR data, and
(2) assignment of spectral peaks by probabilistic alignment of identified secondary structure elements
against the primary sequence. Deferring assignment eliminates the bottleneck faced by traditional ap-
proaches, which begin by correlating peaks among dozens of experiments. Jigsaw utilizes only four
experiments, none of which requires 13C-labeled protein, thus dramatically reducing both the amount
and expense of wet lab molecular biology and the total spectrometer time. Results for three test proteins
demonstrate that Jigsaw correctly identifies 79-100% of α-helical and 46-65% of β-sheet NOE connec-
tivities, and correctly aligns 33-100% of secondary structure elements. Jigsaw is very fast, running in
minutes on a Pentium-class Linux workstation. This approach yields quick and reasonably accurate (as
opposed to the traditional slow and extremely accurate) structure calculations. It could be useful for
quick structural assays to speed data to the biologist early in an investigation, and could in principle be
applied in an automation-like fashion to a large fraction of the proteome.
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1 Introduction

Modern automated techniques are revolutionizing many aspects of biology, for example, supporting extremely
fast gene sequencing and massively parallel gene expression testing (e.g. [5, 18, 20]). Protein structure
determination, however, remains a long, hard, and expensive task. High-throughput structural genomics is
required in order to apply modern techniques such as computer-aided drug design on a much larger scale.
In particular, a key bottleneck in structure determination by nuclear magnetic resonance (NMR) is the
resonance assignment problem — the mapping of spectral peaks to tuples of interacting atoms in a protein.
For example, spectral peaks in a 3D nuclear Overhauser enhancement spectroscopy (NOESY) experiment
establish distance restraints on a protein’s structure by identifying pairs of protons interacting through space.
Assignment is also directly useful in techniques such as structure-activity relation (SAR) by NMR [35, 16]
and chemical shift mapping [6], which compare NMR spectra for an isolated protein and a protein-ligand or
protein-protein complex.

Jigsaw is a novel algorithm for automated main-chain assignment and secondary structure determination.
It has been successfully applied to experimental spectra for three different proteins: Human Glutaredoxin [38],
Core Binding Factor-Beta [19], and Vaccinia Glutaredoxin-1 [22]. In order to enable high-throughput data
collection, Jigsaw utilizes only four NMR experiments: heteronuclear single quantum coherence spectroscopy
(HSQC), HN-Hα-correlation spectroscopy (HNHA), 80 ms total correlation spectroscopy (TOCSY), and
NOESY. This set of experiments requires only days of spectrometer time, rather than the months required
for the traditional set of dozens of experiments. Furthermore, Jigsaw only requires a protein to be 15N-
labeled, a much cheaper and easier process than 13C labeling. From a computational standpoint, Jigsaw

adopts a minimalist approach, demonstrating the large amount of information available in a few key spectra.
Given the set of four spectra listed above, Jigsaw identifies spectral peaks belonging to secondary

structure elements, and assigns them to the corresponding residues in the protein’s primary sequence. In
contrast to theoretical and statistical approaches for secondary structure (e.g. [9, 8]) and global fold (e.g. [39]),
Jigsaw works in a data-driven manner. The continued necessity of experimental approaches is illustrated
by the fact that one of our test proteins, CBF-β, has a unique fold, so that homology-based structure
determination would not be applicable. In contrast to secondary structure predictors, Jigsaw provides not
only an indication of secondary structure, but also tertiary β-sheet connectivity. Finally, as noted above,
the spectral assignment produced by Jigsaw is itself an important product. One use of assigned NMR
data in addition to structure determination is the analysis of protein structural dynamics from nuclear spin
relaxation (e.g. [31, 30, 21]). Assignment is necessary to determine the residues implicated in the dynamics
data. Another important use of NMR assignments, previously mentioned, is SAR by NMR, one of the most
important recent breakthroughs in experimental methods for high-throughput drug activity screening. Even
if a crystal structure is already known, these studies perform NMR experiments in order to analyze chemical
shift changes and determine ligand binding modes. Jigsaw offers a high-throughput mechanism for the
required assignment process.

In order to identify and assign spectral peaks belonging to secondary structure, Jigsaw relies on two key
insights: graph-based secondary structure pattern discovery, and assignment by alignment. Atoms in regular
secondary structure interact in prototypical patterns experimentally observable in a NOESY spectrum.
Traditional NMR techniques determine residue sequentiality from a set of through-bond experiments, and
then use NOE connectivities to test the secondary structure type of the residues. Jigsaw, on the other hand,
starts by looking for these patterns, and uses their existence as evidence of residue sequentiality. Jigsaw

applies a set of first-principles constraints on valid groups of NOE interactions to manage the large search
space of possible secondary structure patterns. Subsequently, Jigsaw assigns spectral peaks by aligning
identified residue sequences to the protein’s primary sequence. To do this, Jigsaw uses side-chain peaks
identified in a TOCSY spectrum to estimate probable amino acid types for the residue sequence. It finds
such a sequence in the protein’s primary sequence, and assigns the spectral data accordingly.

In its philosophy of starting with NOESY connectivities, Jigsaw is in the same spirit as the partially
automated Main-Chain Directed (MCD) approach of Wand and co-workers (e.g. [37, 10, 29]). MCD was
developed for homonuclear spectra, and was applied to experimental data for only one small protein, human
Ubiquitin [37]. Jigsaw, on the other hand, is fully automated and has been successfully applied to experi-
mental heteronuclear spectra for three different larger proteins (for example, CBF-β is nearly twice the size
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of Ubiquitin). Jigsaw takes the steps necessary to deal with the significant amount of degeneracy in spectra
for large proteins; it also provides a formal graph-theoretic framework for understanding and analyzing the
algorithm. Finally, Jigsaw utilizes a novel TOCSY-based method for aligning residue sequences to the
primary sequence.

The Jigsaw and MCD approaches differ greatly from other (automated and partially automated) as-
signment protocols used today in the NMR community. Most modern approaches rely on a large suite of
13C-labeled triple resonance NMR spectra (e.g. HNCA, HNCACB, HN(CO)CACB, . . . ), either to establish
sequential connectivities by through-bond experiments (e.g. Autoassign [46] and Pasta [25]), or to match
chemical shift patterns (e.g. [26] and [7]). As previously discussed, Jigsaw requires only four spectra, mak-
ing it much more suitable for high-throughput studies. Many automated assignment packages boot-strap
the assignment process. For example, Noah [27, 28] uses assignments from through-bond spectra to as-
sign the NOESY. Garant [2] correlates observed peaks across multiple spectra with peaks predicted by a
sophisticated model. Partially-computed structures can be used to refine peak predictions (e.g. [17], [28],
[32]).

The 13C labeling of a protein required by most automated assignment approaches is quite expensive,
making these approaches unsuitable for large-scale structural studies. In return, these protocols yield a great
deal of information (e.g. extensive side chain interactions). In contrast, Jigsaw is much cheaper and faster,
but does not obtain as much information. Thus Jigsaw is especially suitable for quick structural assays to
speed data to the biologist early in an investigation, and could in principle be applied in an automation-like
fashion to a large fraction of the proteome. Furthermore, the Jigsaw approach could also both help and
benefit from current work on large proteins and sparse NOE sets. For example, protocols developed for
the analysis of large proteins use complete predeuteration to alleviate spectral crowding and to sharpen
resolution in NOESY spectra [14, 40, 12]. These protocols yield only HN-HN interactions and perhaps sparse
HN-1H interactions, yet have proven useful in structural studies even though they do not yield the extensive
amount of information used by most 13C-based approaches. Synergies between such protocols and Jigsaw

work in both directions. On one hand, Jigsaw also uses HN-HN and sparse HN-1H interactions to perform
its assignment, and thus the protocols could be combined for studies of larger proteins. On the other hand,
Jigsaw could potentially compute complete three-dimensional structures even with its limited set of spectra
by leveraging the techniques developed to determine global folds from sparse NOEs (e.g. [1, 43, 36]).

Solving the NMR jigsaw puzzle raises a number of interesting algorithmic pattern-matching and com-
binatorial issues. This paper presents an analysis of the problem, algorithms to solve it, and experimental
results. Section 2 reviews the information content available in the NMR spectra used by Jigsaw. Section 3
presents the graph-based formalism and algorithm for finding secondary structure elements in NOESY spec-
tra. Section 4 discusses the alignment process. Sections 3.3 and 4.1 provide results on experimental data
from three different proteins.
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2 NMR Data

NMR spectra capture interactions between atoms as peaks in R2 or R3, where the axes indicate resonance
frequencies (chemical shifts) of atoms. In the 15N spectra used by Jigsaw, peaks correspond to an 15N atom,
an HN atom, and possibly another 1H atom, of particular resonance frequencies. Jigsaw takes as input, in
addition to a protein primary sequence, lists of peak maxima and intensities, correlated across spectra.5

2.1 NMR Spectra

Figure 1 illustrates the experiments utilized by the Jigsaw algorithm, and Figure 2 shows how the informa-
tion content is encoded in data structures used by Jigsaw.

HSQC An HSQC spectrum [4, pp. 411-447] identifies unique pairs of through-bond correlated HN and 15N
atoms. Every residue has a unique such HN-15N pair on the protein backbone; the coordinates for
the pair are shared by all interactions within that residue and serve to reference interactions across all
spectra.6 Thus the HSQC serves to identify nodes (putative residues) for Jigsaw.

HNHA An HNHA spectrum [4, pp. 524-528] captures interacting intraresidue through-bond HN-15N-Hα;
peak intensities estimate the J coupling constant 3JHNHα which is correlated with the φ bond angle of
a residue. Since this angle is characteristically different for α-helices and β-sheets, Jigsaw uses it as
an estimator of the secondary structure type.

TOCSY A TOCSY spectrum [13] includes through-bond interactions with 1H atoms on a residue’s side
chain; the 80 ms TOCSY in particular reaches many atoms on a residue’s side chain. Since the chemical
shifts of 1H atoms for different amino acid types are characteristically different, Jigsaw uses the shifts
of a TOCSY as a fingerprint of the amino acid type.

NOESY The 3D 15N-edited NOESY experiment [13] correlates an amide proton HN and its 15N with a
second proton that interacts through space at a distance less than 6 Å, via the Nuclear Overhauser
Effect (NOE). In the terminology of [42], a dNN interaction represents an HN-HNpair, while a dαN

interaction represents an Hα-HNpair (see Figure 1(b)); these can be distinguished by the characteristi-
cally different chemical shifts of Hα and HN atoms. Jigsaw uses the NOE peaks to form edges between
nodes for potentially interacting residues.

2.2 NMR Data Structures

Using the information content of NMR spectra discussed in the preceding subsection, Jigsaw builds two
data structures: an interaction graph connecting residue nodes, and a set of fingerprints for each node.

The first data structure, the NOESY interaction graph, is an abstraction of a NOESY spectrum that
indicates potential residue interactions that could explain the peaks in a spectrum. Each 3D interresidue
NOE peak has the HN and 15N coordinates of one residue and the 1H coordinate of the Hα or HN proton of
another residue. The HSQC indicates which is the first residue by its unique HN and 15N coordinates. The
TOCSY and HNHA indicate residues whose Hα or HN has the given 1H coordinate. Unfortunately, projection
onto the 1H dimension yields a large amount of spectral overlap — many protons have the same chemical
shift, within a tolerance. For example, there are 10-20 possible explanations for each peak in the NOESY
spectrum of CBF-β (see Section 3.3), yielding a 5-10% signal-to-noise ratio. This spectral overlap is the
major source of complexity in the Jigsaw approach. The NOESY interaction graph captures the complete
set of possible explanations for the peaks; the Jigsaw search algorithm then determines the correct ones.

Definition 1 (NOESY Interaction Graph) A NOESY interaction graph G = (V,E) is a labeled, di-
rected multigraph with vertices V corresponding to residues and edges E ⊂ V × V such that e = (v1, v2) ∈ E
iff there is a NOESY interaction between a proton of v1 and a proton of v2. Vertices and edges are labeled
as follows:

5Automated peak picking is an interesting and well-studied signal processing problem (e.g. AUTOPSY [23]).
6Some side chains, such as Gln, have their own HN-15N pairs as well. These can be removed in preprocessing, or detected

and handled specially.

5



Secondary structure type label s : V → {α, β, ρ} × [0, 1] indicates whether a residue is believed to be in
an α-helix, a β-sheet, or other (random-coil) conformation, and the level of confidence in that belief.

Interaction type t : E → {dNN, dαN} indicates a dαN or dNN interaction.

Match score m : E → R
+ is the 1H frequency difference between the observed peak and the shift of the

correlated Hα or HN.

Atom distance d : E → R
+, computed from the NOE peak intensity, estimates the proximity of the

correlated atoms.

A high match score suggests that a given edge, rather than one of its competitors, is the correct one. In
practice, the NOESY interaction graph only includes edges for which the match score is below some threshold
(e.g. 0.05 ppm). Different atom distances are expected for atom pairs in different conformations; (e.g. a pair
of HN atoms in an α-helix is expected to be quite close).

This data structure provides a more abstract view of the NOESY information than typical atom-based
representations [42, 37], and is more amenable to search and analysis.

The second data structure, the TOCSY fingerprint, collects all proton chemical shifts associated with a
given node.

Definition 2 (Fingerprint) A fingerprint is a set of 1H chemical shifts correlated with a given residue
( HN-15N pair).7

Section 4 uses fingerprints as indications of probable amino acid type, in order to find where in the primary
sequence to align a sequence of nodes belonging to a secondary structure element.

7The main-chain 15N chemical shift can also be included in the fingerprint.
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3 Graph-Based Secondary Structure Pattern Discovery

In order to find the correct secondary structure of a protein from the highly ambiguous NOESY interaction
graph, Jigsaw employs a multi-stage search algorithm that enforces a set of consistency rules in potential
groups of edges. The following subsections detail these consistency rules and the Jigsaw graph search
algorithm.

3.1 NOESY Interaction Graph Constraints

Figure 3 shows some prototypical NOE interactions in (a) an α-helix and (b) an anti-parallel β-sheet (af-
ter [42]).8 Due to the way a helix is twisted, the HN of one residue is close to the HN residue of the next, and
the Hα of one residue is close to the HN of the residue one complete turn up the helix. Since a β-sheet is more
stretched out, only the Hα-HN sequential interactions are experimentally visible in the NOESY, but a rich
pattern of cross-strand interactions are possible. Figure 4 represents these patterns in NOESY interaction
graphs, and enumerates the interaction graph constraints imposed on these graphs by the geometry of helices
and sheets.9

Definition 3 (Consistency with Interaction Graph Constraints) A subgraph G′ of a NOESY inter-
action graph G is consistent with the interaction graph constraints if there exists an ordering of the vertices
V (G′) into sequences such that every edge e ∈ E(G′) satisfies one of the forms listed in Figure 4.

While a NOESY interaction graph from experimental data contains many false edges (and some missing
edges as well), the interaction graph constraints strongly limit how the correct edges fit together. As an
example, consider the pattern in Figure 3(a). The large amount of noise in a NOESY interaction graph
implies that a vertex will have many (around 10 — see Section 2) dNN edges to vertices that could follow it
sequentially in an α-helix. However, based on a simple joint probability model (and confirmed by the statistics
of Table 5 discussed below), an incorrect dNN edge is less likely also to have its symmetric counterpart.
Similarly, the probability of stringing together an incorrect sequence of four vertices and connecting them
with an additional dαN edge from the first to the last is even less, and the probability that multiple such
sequences adjoin each other is even less. Intuitively, while correct edges consistently reinforce each other,
incorrect edges tend to be randomly distributed and thus mutually inconsistent. This insight is repeatedly
utilized in the Jigsaw algorithm.

3.2 NOESY Interaction Graph Search

The goal of the Jigsaw NOESY graph search is to find a subgraph of a given interaction graph that encodes
the secondary structure of the protein. Such a graph will have interactions indicative of the corresponding
secondary structure elements, and thus will satisfy the interaction graph constraints.

Definition 4 (Secondary Structure Graph) A secondary structure graph G∗ is a subgraph of a NOESY
interaction graph G that is consistent with the interaction graph constraints (Definition 3).

Since a globally consistent graph consists of multiple locally consistent subgraphs, each of constant size, Jig-

saw does not have to solve a large subgraph isomorphism problem to obtain the entire secondary structure.
Figure 5 illustrates the key steps of the Jigsaw graph search algorithm. Given an interaction graph,

Jigsaw identifies small fragment subgraphs (“jigsaw pieces”) satisfying the interaction graph constraints,
merges them into α-helices and pairs of adjacent β-strands, and collects the sequences into entire secondary
structure representations. In practice, there are many incorrect fragments among the correct ones, but as
discussed at the end of the previous section and supported in the results section, mutual inconsistencies
generally keep them from merging into larger graphs. A final step is to rank the best solved jigsaws. The
following subsections detail these steps.

8Parallel β-sheets have similar interactions; we illustrate Jigsaw’s approach by concentrating on anti-parallel β-sheets.
9Note that since 12Cα is not NMR-active, dαN interactions are asymmetric.
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3.2.1 Identify Fragments

The first step of Jigsaw is to find small, consistent subgraphs of an interaction graph. Jigsaw searches for
fragment instances of a set of fragment patterns evident in canonical interaction graphs (Figure 4).

Definition 5 (Fragment Pattern) A fragment pattern is a set of constraints on the connectivities, in-
teraction types, match scores, and atom distances for a set of edges, along with the secondary structure type
labels for the vertices.

Definition 6 (Fragment) A fragment is a subgraph of an interaction graph satisfying the constraints of a
particular fragment pattern (Definition 5).

Figure 6 illustrates the connectivities of some such fragment patterns. Each pattern instance groups a
small set of edges (representing NOE peaks) that are mutually consistent. Fragment patterns also allow
the possibility of missing edges in experimental data. The directions of the missing edges are, however,
determined by those of the other edges. For example, in Figure 6(b), patterns 3 and 4 are similar to patterns
1 and 2, respectively; the direction of the missing vertical edge can be inferred from the correspondence.

Fragments are identified by a straightforward graph search: search from each node, forming paths of
edges that remain consistent with the pattern. Table 1 provides pseudocode for this search. The algorithm
assumes that the connectivities of a fragment pattern are ordered so that the first p1 edges each connect to
exactly one new node, and the remaining edges, up to p total, each connect only already-visited nodes. Since
each pattern specifies a connected subgraph, such an ordering is guaranteed to exist. Arguments F and T
to the algorithm specify the indices of the from- and to-nodes for an edge, respectively. For example, the
search for pattern 1 in Figure 6(a) would start from the leftmost node, find all edges from that node forward
to the second node, find all edges from that node forward to the third node (so that the second node found,
the to-node of the first edge, serves as the from-node for possible second edges; i.e. F2 = 2), and so forth.

The algorithm starts from each of n nodes and searches to a fixed depth of p for a pattern of p edges,
examining only the edges from a specified node at each step. A bound d on the maximum degree of each
node permits a bound on the complexity of the search: we perform n searches, each of size O(dp).

Claim 1 (Computational Complexity of Fragment Pattern Identification) Given an interaction graph
with n nodes and maximum degree d, instances of a fragment pattern involving p edges can be identified in
time O(ndp).

In practice (as demonstrated in Table 5 below), the interaction graph constraints greatly restrict the search,
pruning most paths before they reach a depth of p.

We assume that the fragment patterns generate a complete set of fragments. That is, any secondary
structure graph G∗ for a given interaction graph G can be formed from a union of the fragments identified
in G. Due to the large number of incorrect edges, there can also be many incorrect fragments. It remains
for the subsequent processing stages (below) to eliminate them.

3.2.2 Merge Sequentially-Consistent Fragments

Given a set of fragment “jigsaw pieces” F , Jigsaw starts solving the puzzle of secondary structure by finding
sequences of fragments whose union defines either an α-helix or two neighboring strands of a β-sheet and
is consistent with the interaction graph constraints. To reduce the computational cost, it is possible to
identify a set of root fragments F ′ ⊆ F that satisfy stronger constraints, and to root the sequences at these
fragments.

Definition 7 (Rooted Fragment Sequence) Given a set of fragments F for an interaction graph G and
a set of chosen root fragments F ′ ⊆ F , a rooted fragment sequence F is a subgraph of G consistent with the
interaction graph constraints for either a single α-helix or a pair of adjacent β-strands, and formed from the
union of a set of n fragments F = {f1, f2, . . . , fn} ⊂ F , where f1 ∈ F ′.
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Fragment sequences are computed by a straightforward exhaustive search from the root fragments (Table 2
provides pseudocode). In the worst case there are an exponential number of sequences — if any fragment
can connect to any other, then there are |F|! possible such sequences. However, as with fragment pattern
identification, the interaction graph constraints limit the possible sequences, and as Table 5 illustrates, the
number of sequences generated from an initial fragment is much less than this upper bound.

The completeness of fragment sequences follows immediately from the assumed completeness of fragments,
if there is at least one root fragment per helix or strand pair. We state the claim here for completeness of
exposition.

Claim 2 (Completeness of Fragment Sequences) Any secondary structure graph G∗ for a given inter-
action graph G is a union of the fragment sequences for the fragments F in G.

3.2.3 Collect Consistent Sequences

To obtain an entire, consistent secondary structure graph for the protein, Jigsaw forms unions of consistent
fragment sequences (see Table 3 for the specification). Imposing directionality — first identifying sequences
and then joining them — greatly reduces the size and redundancy of the search space. While the merging
step is worst-case exponential in the number of fragment sequences, again in practice the interaction graph
constraints keep the search sub-exponential (see Table 5) and allow the algorithm to run in only minutes.

As with fragment sequences, the completeness result follows immediately from the definition and is stated
here for purposes of formalization.

Claim 3 (Completeness of Secondary Structure Graphs) Jigsaw finds all consistent secondary struc-
ture graphs G∗ for a given interaction graph G.

3.2.4 Identify Best Secondary Structure Graphs

The final step in the Jigsaw graph search is to identify the best secondary structure graphs from the set
of collected possibilities. Intuitively, the algorithm should produce a large graph, reaching all the vertices
expected to belong to the given secondary structure type. Smaller graphs probably were not expanded due to
inconsistencies. Furthermore, as many of the expected edges as possible should belong to the graph (vertices
should have high degree), and should have good match scores.

This intuition is formalized with a probabilistic measure of a graph’s correctness. For simplicity, we
assume a Gaussian a priori probability that an edge e indicates the correct interaction represented by
a spectral peak, based on comparison of 1H chemical shifts (recall that the match score m(e) encodes
the difference — see Definition 1); it remains interesting future work to incorporate actual spectral “line
shapes” [23] into this analysis. Normalization over all edges generated for the peak yields the probability
that that edge is a good explanation for its peak. This yields a higher probability when a peak closely
matches, and when it doesn’t have many good competitors:

P (interaction(e)) = Gσ(m(e)) (1)

P (good(e)) =
P (interaction(e))∑

e′∈C(e)

P (interaction(e′))
(2)

where Gσ(·) denotes a Gaussian of width σ, and C(·) denotes the set of edges generated for the peak of a
given edge.

The correctness probability for a secondary structure graph G∗ depends the goodness of its edges:

P (correct(G∗)) = 1−
∏
e∈G∗

(1− P (good(e))) (3)

The correctness probability can be applied during fragment sequence enumeration (Section 3.2.2) and
secondary structure graph construction (Section 3.2.3), in order to prune graphs with too little support
(correctness probability too low for the graph size).
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3.3 Experimental Results

Jigsaw was tested on experimental data for Human Glutaredoxin (huGrx) [38], Core Binding Factor-Beta
(CBF-β) [19], and Vaccinia Glutaredoxin-1 (vacGrx) [22].10 15N-edited HSQC, HNHA, 80 ms TOCSY,
and NOESY spectra were collected on a 500MHz Varian spectrometer at Dartmouth and processed with
the program Prosa [15]. Peaks were picked manually and in a semi-automated fashion with the program
Xeasy [3]. Jigsaw was invoked with the appropriate primary sequences and ASCII peak lists, referenced
across spectra.11 In order to distinguish the dependence on HNHA from the dependence on NOESY, Jigsaw

was run with two spectral suites: the first with simulated J-coupling constants set at the nominal values
for the correct secondary structure type, and the second with J-coupling constants computed from the
experimental HNHA data; all other spectra were the same in the two suites. Jigsaw used the patterns of
Figure 4 with a set of generic constraints on match score and atom distance. Computation took about one
to ten minutes, depending on the protein.

Figures 7, 8, and 9 depict the α-helices discovered by Jigsaw in CBF-β, huGrx, and vacGrx, respectively,
with both suites of spectra. The results are similar for both suites, except that α-helices in suite 2 sometimes
extend past or fail to reach the end of an α-helix or β-strand, due to misleading J constants. In vacGrx
under suite 2, an additional potential rigid piece of secondary structure is uncovered, extending from residue
48 to residue 51.

Figures 10 and 11 show the β-sheets uncovered by Jigsaw in CBF-β and huGrx, respectively, using suite
2. The results for CBF-β with suite 1 are the same as in Figure 10, but with the correct edges to residue 100
rather than the incorrect edges to 101 and 71. The results for huGrx with suite 1 are identical; in both cases,
connectivity in the lower two strands of huGrx is too sparse for Jigsaw. Figure 12 shows that the NOESY
connectivities for β-sheets in vacGrx are too sparse for general-purpose Jigsaw patterns to detect. These
test cases demonstrate that Jigsaw correctly uncovers a significant portion of the β structure, particularly
in well-connected portions of the graph. Note that β-sheets are tertiary structure, indicating more than just
the sequentiality of their strands.

The purpose of the graph search is to identify the small fraction of edges in the NOESY interaction graph
that are actually involved in secondary structure. Ultimately, this means that the algorithm is identifying
for each NOE peak which putative residues are interacting to cause that peak. Thus, appropriate metrics for
Jigsaw’s graph search performance are the numbers of correct and incorrect edges/peaks identified, based
on the actual assignments known from the literature. Table 4 summarizes the results for all three proteins.
It also includes the number of “extra” edges that aren’t considered part of the secondary structure elements
but are still sequentially correct. With spectral suite 2, Jigsaw is less accurate about the extent of a
helix or strand; however, the actual extent is ambiguous, and extending to additional sequentially-connected
residues can be beneficial by providing additional assignments. The β-sheet peaks for both huGrx and
vacGrx are so sparse that Jigsaw identifies little to no β structure. In general, it is much harder to uncover
β-sheets than α-helices, since β-strand sequentiality is specified by the noisier Hα region of the spectrum.
We expect proteins with significant β-sheet content, such as CBF-β, to have enough connectivity to support
the mutually confirming Jigsaw graph patterns.

Table 5 demonstrates that, due to the interaction graph constraints, the actual combinatorics of Jigsaw

are much better than the worst-case exponential possibility. Notice that Jigsaw efficiently explores one to
two thousand edges (Table 5, line 1) to find less than one hundred correct ones (Table 4, lines 1-2).

10While huGrx and vacGrx have similar structures, their experimental spectra have significant differences.
11For CBF-β, Jigsaw uses manually-computed J-constants, following the NMR protocol of [19].
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4 Fingerprint-Based Sequence Alignment

Fingerprint-based sequence alignment finds sets of sequential residues in the protein sequence corresponding
to the vertex sequences identified by the Jigsaw graph search algorithm. This process utilizes the TOCSY
fingerprints introduced in Section 2.

The BioMagResBank (BMRB) has collected statistics from a large database of observed chemical shifts [34].
Figure 13 shows the mean chemical shifts for the protons of the 20 different amino acid types. The chemical
shifts are affected by local chemical environment, which includes amino acid type and secondary structure.
The chemical shift index (CSI) has successfully used this information to predict secondary structure type
given chemical shift and amino acid type [41]. Jigsaw takes a different approach: it “inverts” the BMRB
to predict amino acid type given chemical shift and secondary structure type.

The first step in alignment is to match each vertex’s fingerprint with the canonical BMRB fingerprints.
Due to extra and missing peaks, only a partial match might be possible.

Definition 8 (Partial Fingerprint Match) A partial fingerprint match between vertex fingerprint Sv and
BMRB amino acid fingerprint Sa (a ∈ A = {Ala, Arg, . . .}), is a bijection m : Sv ′ → Sa

′ between subsets
Sv
′ ⊆ Sv and Sa′ ⊆ Sa.

Partial fingerprint matches are scored based on how well corresponding points match, together with
penalties for extra and missing points. Assuming Gaussian noise around the expected chemical shift, with
standard deviation σa for amino acid type a, the match score is defined as follows:

partial(Sv ′, Sa′) = c0|Sv − Sv ′|+ c1|Sa − Sa′|+ c2
∏
p∈Sv ′

Gσa(p−m(p)) (4)

where c0, c1, c2 are weighting factors.
The match score for a vertex and amino acid type is defined as the best partial fingerprint match score;

normalization yields the probability that a vertex is of a given amino acid type.

match(Sv, Sa) = max
Sv ′⊂Sv,Sa′⊂Sa

partial(Sv ′, Sa′) (5)

P (type(v, a)) =
match(Sv, Sa)∑

b∈A

match(Sv, Sb)
(6)

Then the probability that a sequence of vertices V = (v1, v2, . . . vn) aligns at position r in the primary
sequence L (where r ≤ |L| − |V |) is the joint type probability over corresponding vertices and amino acid
types. The best alignment for a sequence of vertices V relative to a primary sequence s is the position r
maximizing the probability.

P (align(V, s, r)) =
n∏
i=1

P (type(vi, sr+i−1)) (7)

alignment(V, s) = argmax
r≤|L|−|V |

P (align(V, s, r)) (8)

This alignment process aligns each secondary structure element separately. As it is, this approach provides
a basic algorithm for spectral interpretation, explaining peaks in a TOCSY spectrum by identifying which
side-chain protons of a particular amino acid type could have caused them. However, in order to achieve
the additional goal of finding a complete secondary structure assignment, it is necessary to ensure that no
alignments conflict. This problem is similar to that of protein threading [24], where a novel primary sequence
must be matched up against secondary structure elements from a known global fold. However, in our case,
the ordering of the secondary structure elements is unknown (and of course the scoring function is different).
It remains future work to extend threading algorithms to handle this harder task.
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4.1 Experimental Results

The purpose of the alignment process is to interpret a TOCSY spectrum by identifying a substring of amino
acid types in the primary sequence such that the peaks expected for the side chain protons can explain the
observed peaks. The performance of this spectral interpretation process was tested by separately aligning
each secondary structure element. Tables 6, 7 and 8 detail the results of fingerprint-based alignment for
the TOCSY shifts of known α-helices and β-strands in CBF-β, huGrx, and vacGrx, respectively. Table 9
summarizes the number of correct alignments for all three proteins. The simulated TOCSY is produced
from the average chemical shifts of the side-chain protons entered in the BMRB for the given protein. Since
the simulated fingerprints are from data correlated among many spectra, they are much more complete and
indicative of the amino acid types than are the single experimental TOCSY spectra. While experimental
TOCSY yields good alignment results, the simulated results demonstrate that as pulse sequences improve
(see e.g. [44, 45]), the experimental results should get even better. In general, long sequences align better
than short ones, although unusually noisy data can disrupt the alignment.

As discussed in the preceding section, a generalized threading approach will be necessary in order to
determine a consistent alignment for all secondary structure elements of a protein. We tried a simple test in
order to evaluate the potential for success of such an algorithm. This test found the top five alignments for
each secondary structure element of huGrx; took the cross product to identify sets of alignments, one for each
element; eliminated the members that included overlapping alignments; and scored the remaining alignment
sets with the product of probabilities for the individual member alignments. The correct alignment set
received the best score, by a factor of 100. This motivates the hope that, while individual alignments might
not always score best, determining a complete alignment set will correct individual mistakes by eliminating
sets with inconsistent members.
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5 Conclusions and Future Work

This paper has described the Jigsaw algorithm for automated high-throughput protein structure determi-
nation. Jigsaw uses a novel graph formalization and new probabilistic methods to find and align secondary
structure fragments in protein data from a few key fast and cheap NMR spectra. A set of first-principles
graph consistency rules allow Jigsaw to manage the search space and prevent combinatorial explosion. Jig-

saw has proven successful in structure discovery and alignment with experimental data for three different
proteins.

Jigsaw offers a novel approach to the automated assignment of NMR data and the determination of
protein secondary structure. Since Jigsaw uses only four spectra and 15N-labeled protein, it is applicable
in a much higher throughput fashion than traditional techniques, and could be useful for applications such
as quick structural assays and SAR by NMR. It demonstrates the large amount of information available in a
few key spectra. Finally, Jigsaw formalizes NMR spectral interpretation in terms of graph algorithms and
probabilistic reasoning techniques, laying the groundwork for theoretical analysis of spectral information.

We are developing a random graph analysis of the complexity, correctness, and completeness of Jigsaw.
This analysis uses a statistical model of the noise (extra and missing edges) in an interaction graph to com-
pute the probability of false positives and false negatives for fragments, fragment sequences, and secondary
structure graphs. This is an important direction for future work.

Jigsaw has only been run on the three proteins reported above. We plan to apply Jigsaw to experimental
data for additional proteins, and to extend the techniques to analysis of DNA NMR data. We invite structural
biologists desiring a fast structural assay to contact us if they wish to run Jigsaw. We anticipate that, since
larger proteins have more NOEs, Jigsaw will have to handle more incorrect edges, and thus will require
increased computational cost. An accurate noise model will provide a better indication of the dependence
of computational complexity on spectrum size. We believe that as long as the noise edges are randomly
distributed and do not achieve an overwhelming density, only correct graphs will be able to connect a
large number of nodes with a dense set of consistent edges. There are also interesting possible connections
between Jigsaw and approaches to computing structures of large proteins via deuteration and sparse NOEs;
the introduction discusses the synergy in more detail.

An iterative deepening approach [33, pp. 70-71] could be incorporated into Jigsaw by noticing incom-
pleteness of a secondary structure graph and restarting with looser constraints for fragment generation. For
example, circular dichroism data provides an accurate estimate of the total amounts of α-helical and β-sheet
structure in a protein [11]. By converting the secondary structure percentage to a count of the number
of vertices involved, Jigsaw could recognize that a secondary structure graph was incomplete. Similarly,
statistical secondary structure predictors (e.g. [9, 8]) predict the number of residues participating in separate
secondary structure elements; Jigsaw could recognize and analyze the difference between its results and
such a prediction.

The Jigsaw technique could be extended to assign HN-1H NOESY peaks on the side chains and to
compute the global fold of a protein. Spectral referencing between TOCSY and NOESY gives an indication
of which NOESY peaks belong to a given residue; additional interresidue interactions could then be identified
in the NOESY and used to constrain the global geometry of α-helices and β-sheets. While such interactions
will be sparse in purely 15N-labeled protein, they might be sufficient to aid threading techniques that utilize
secondary structure and sparse NOEs (e.g. [1, 43]) or structure determination algorithms from sparse NOE
sets (e.g. [36]). Finally, Jigsaw could be re-targeted to include data from 13C-labeled proteins, in order to
attack larger proteins, while still requiring smaller sets of data than traditional approaches.
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Figure 1: Atom nomenclature and interactions in a protein. (a) Through-bond interactions shown with
dotted lines (HSQC: HN-15N; HNHA: HN-15N-Hα; TOCSY: HN-15N-Hα-Hβ-. . . ). (b) Through-space inter-
actions in NOESY shown with wavy lines (dαN solid and dNN dashed).
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Figure 2: NMR spectra (rectangular boxes) and their uses in Jigsaw data types (oval boxes). The HSQC
identifies a putative residue; the HNHA provides the φ angle, correlated with membership in α-helix or β-
sheet; the TOCSY shows a fingerprint of side-chain proton shifts; the NOESY indicates possible interactions
between nodes, with intra- vs. interresidue interactions distinguished by Hα shifts from the HNHA and
TOCSY.
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Figure 3: NOESY dαN (solid) and dNN (dotted) interactions in (a) α-helices and (b) β-sheets.
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• dNN: hi↔hi+1

• dαN: hi→hi+3

(a)
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• dαN: ai→ai+1, bi→bi−1, ci→ci+1

• dαN: a2i→b2i, b2i+1→a2i+1, b2i→c2i, c2i+1→b2i+1

• dNN: a2i+1↔b2i, a2i+1↔b2i+2; b2i+1↔c2i, b2i+1↔c2i+2

(b)

Figure 4: Interaction graphs (dαN edges solid and dNN dotted) and constraints for (a) α-helices and (b) β-
sheets. This figure shows perfect patterns. Interaction graphs in experimental NMR data contain significant
noise, manifested as some missing and many extra graph edges.
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Figure 5: Jigsaw algorithm overview: (a) identify graph fragments, (b) merge them sequentially, and (c)
collect them into complete secondary structure graphs. Only correct fragments are shown here. Graphs from
experimental data also generate a large number of incorrect fragments, but mutual inconsistencies prevent
them from forming either long sequences or large secondary structure graphs.
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Figure 6: Interaction graph fragment patterns in (a) α-helices and (b) β-sheets.
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Figure 7: α-helices of CBF-β computed by Jigsaw, using spectral suites 1 and 2. Edges: solid=correct;
dotted=false negative; X=false positive. Vertices: solid=correct; empty=sequentially correct but not in
α-helix.
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Figure 8: α-helices of huGrx computed by Jigsaw, using spectral suites 1 and 2. Edges: solid=correct;
dotted=false negative. Vertices: solid=correct; empty=sequentially correct but not in α-helix.
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Figure 9: α-helices of vacGrx computed by Jigsaw, using spectral suites 1 and 2. Edges: solid=correct;
dotted=false negative. Vertices: solid=correct; empty=sequentially correct but not in α-helix.
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Figure 10: β-sheets of CBF-β computed by Jigsaw. Edges: solid=correct; dotted=false negative; X=false
positive.
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Figure 11: β-sheets of huGrx computed by Jigsaw, using spectral suite 2. Edges: solid=correct; dotted=false
negative.
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Figure 13: BMRB mean 1H chemical shifts over different amino acid types. These shifts define “fingerprints”
for the expected TOCSY peaks of different amino acid types; the fingerprint for His is isolated as an example.
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Function fragments(G, p1, p, F, T )
Set G ← ∅
For each v ∈ V (G)

Let G1 = {({v, to(e)}, {e}) | from(e) = v}
For i = 2..p1

Let Gi = {(V (G) ∪ {to(e)}, E(G) ∪ {e}) | (G ∈ Gi−1) ∧ (from(e) = V (G)Fi)}
For i = p1 + 1..p

Let Gi = {(V (G), E(G) ∪ {e}) | (G ∈ Gi−1) ∧ (from(e) = V (G)Fi) ∧ (to(e) = V (G)Ti)}
Set G ← G ∪ Gp

return G

Table 1: Pseudocode for Jigsaw graph fragment identification. Add edges to the growing fragments such
that each additional edge is from the specified already-found vertex (up to p1) or between the specified
already-found vertices (after p1). Other constraints (e.g. type and match score) filter the sets but aren’t
shown here for simplicity.
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Function sequences(F ,F ′)
Set S ← F ′
While S continues to grow

Set S ← {(V (S) ∪ V (F ), E(S) ∪ E(F )) | (S ∈ S) ∧ (F ∈ F) ∧ (S ∪ F connected) ∧ (S ∪ F consistent)}
return S

Table 2: Pseudocode for Jigsaw fragment sequence growth. Add fragments to the growing sequences such
that each additional fragment is connected to the left or right end of a sequence (i.e. to a node with no
forward or no backward adjacency) and the new sequence satisfies the interaction graph constraints.
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Function secondary structures(S)
return {G′ = (

⋃
G∈S

V (G),
⋃
G∈S

E(G)) | (S ⊆ S) ∧ (G′ consistent)}

Table 3: Pseudocode for Jigsaw sequence collection. Find subsets of the fragment sequences such that the
resulting graph satisfies the interaction graph constraints.
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huGrx CBF-β vacGrx

Actual 82 72 80
Correct 70; 65 72; 62 63; 63
% Correct 85%; 79% 100%; 86% 79%; 79%
Extra seq. 0; 0 0; 12 0; 8
Incorrect 0; 0 0; 4 0; 0

(a)

huGrx CBF-β

Actual 28 89
Correct 13; 13 58; 54
% Correct 46%; 46% 65%; 60%
Extra seq. 0; 0 0; 0
Incorrect 0; 0 0; 2

(b)

Table 4: Summary of results for Jigsaw secondary structure discovery ((a) α-helices and (b) β-sheets), for
spectral suites 1 (first) and 2 (second).
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huGrx CBF-β vacGrx

Edges 1312 2216 807
Fragments 72 95 64
Root fragments 36 30 13
Fragment sequences 147 186 203
2ary structure graphs 647 17279 671

(a)

huGrx CBF-β

Edges 1312 2216
Fragments 277 1611
Root fragments 2 101
Fragment sequences 9 527
2ary structure graphs 9 6287

(b)

Table 5: Combinatorics of Jigsaw secondary structure discovery for (a) α-helices and (b) β-sheets.
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Sequence Simulated Experimental
Rank ρ Rank ρ

α1:10–16 1 9 · 104 1 3 · 102

α2:18–23 1 2 · 104 17 4 · 10−6

α3:34–36 1 4 · 101 3 7 · 10−2

α4:43–52 1 1 · 1013 1 2 · 104

α5:131–140 1 7 · 1014 1 1 · 1019

β1,1:27–31 1 4 · 103 5 3 · 10−2

β1,2:55–60 1 2 · 106 1 2 · 104

β1,3:65–68 1 2 · 101 1 1 · 103

β2,1:96–104 1 2 · 101 1 7 · 102

β2,2:108–117 1 4 · 1010 11 3 · 10−5

β2,3:122–130 1 3 · 104 5 1 · 10−1

Table 6: Fingerprint-based alignment results for α-helices and β-strands of CBF-β, with both simulated and
experimental TOCSY data. ρ indicates the relative score of the alignment — relative to either the best
alignment, if the correct one is not best, or else to the second-best alignment.
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Sequence Simulated Experimental
Rank ρ Rank ρ

α1:4–9 1 7 · 107 1 1 · 105

α2:25–34 1 5 · 1017 1 8 · 106

α3:54–65 1 1 · 1016 1 9 · 1013

α4:83–91 1 4 · 105 1 2 · 104

α5:94–100 1 2 · 107 2 2 · 10−1

β1,1:43–47 1 1 · 103 3 7 · 10−3

β1,2:15–19 1 2 · 103 1 3 · 103

β1,3:72–75 1 1 · 103 4 2 · 10−2

β1,4:78–80 2 2 · 10−1 4 4 · 10−2

Table 7: Fingerprint-based alignment results for α-helices and β-strands of huGrx, with both simulated and
experimental TOCSY data. ρ indicates the relative score of the alignment — relative to either the best
alignment, if the correct one is not best, or else to the second-best alignment.
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Sequence Simulated Experimental
Rank ρ Rank ρ

α1:3–8 1 2 · 1010 5 3 · 10−2

α2:25–34 1 1 · 1011 2 3 · 10−1

α3:54–63 1 1 · 1032 1 2 · 103

α4:83–91 1 7 · 1013 4 5 · 10−3

α5:94–101 1 1 · 105 3 2 · 10−2

β1,1:42–47 1 4 · 101 1 2 · 101

β1,2:14–20 1 3 · 103 15 3 · 10−8

β1,3:72–74 1 4 · 102 10 5 · 10−4

β1,4:78–80 12 2 · 10−3 1 1 · 103

Table 8: Fingerprint-based alignment results for α-helices and β-strands of vacGrx, with both simulated
and experimental TOCSY data. ρ indicates the relative score of the alignment — relative to either the best
alignment, if the correct one is not best, or else to the second-best alignment.
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huGrx CBF-β vacGrx

Correct (simulated TOCSY) 8/9 11/11 8/9
Correct (experimental TOCSY) 6/9 6/11 3/9

Table 9: Fingerprint-based alignment results summary for both simulated and experimental TOCSY data.
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