Announcements

- Next Reading and RQ due Thursday
- Assignment 6 due Thursday
- APT 5 due tonight, APT 6 due Nov 7
- APT Quiz2 Sun-Wed next week
- Lab this week - images

Today:
- Nested loops, tuples, images

ACM Programming Contest
Need Volunteers
Saturday, Nov 11 at Duke

- Over 120 teams, 8 university sites
- Team:
 - 3 people, 1 computer
 - 8 problems, 5 hours
- Need volunteers to deliver printouts, etc
 - 8:15am-12:30 OR 11:20am-6pm
 - Get tshirt and meals!

It’s Halloween

- What is Prof. Rodger’s Halloween costume, from long ago….
YARN, in the shape of a binary tree.

Subtrees made with molecule kit.

What is it?

2D-range tree

- Search in x-y plane
- Main tree organized by x-values
- Subtree organized by y values

Problem: Given list of words, find word with most vowels

- Example:
 - Given ['dog', 'cat', 'gerbil', 'elephant']
 - 'elephant' has 3 vowels, the most

- To solve – nested loops:
 - Loop over words in list
 - For each word: Loop over characters in word

Binary Search tree of points in the plane – sorted by X-value

In the x-range

Search each subtree by y-value
Problem — Given two lists of names, print a list of pairs of names in which the two names are the same length

- A = ['mo', 'ted', 'bill']
- B = ['billie', 'jes', 'bo']

To solve

- for name in A:
 - for name in B:
 - Check length
 - print pair

1. How do you solve this problem?
2. How is it similar to the problem we just solved?
Example Data for UniqueZoo

["zebra bear fox elephant", "bear crocodile fox", "rhino elephant crocodile kangaroo", "elephant bear"]

UniqueZoo – two zoos have unique animals

Image Processing

- What's real, what's Photoshopped
 - Learn more at http://bit.ly/1Psi0hG, we'll do very basic stuff in class and lab, next assignment too!

Example: convert color to gray scale

Process each pixel
Convert to gray
Example: convert blue to green

Process each pixel
Convert blue ones to green
Is this like red-eye removal?

Lab 8

- You’ll create new images
 - Invert
 - Solarize
 - Darken
 - Brighten
 - etc

Need new concepts and Image library

- Red, Green, Blue color model
 - Triples of (R,G,B) are processed as Python tuples.
 - Let's study tuples!

- Images can be very big, what's 4K display?
 - 4,096 x 2,160 = 8,847,360 pixels, 8Mb at least
 - Creating huge lists takes up memory
 - Sometimes only need one pixel at-a-time
 - Let's study generators!

Need new concepts and Image library

- Red, Green, Blue color model
 - Additive model, each pixel specified by (r,g,b) triple, values of each between 0-255
 - White is (255,255,255) and Black is (0,0,0)

- Images stored as sequence of (r,g,b) tuples, typically with more data/information too
 - 256 values, represented as 8 bits, $2^8 = 256$
 - 32 bits per pixel (with alpha channel)
 - In Python we can largely ignore these details!
Image library: Two ways to get pixels

- Each pixel is a *tuple* in both models
 - Like a list, indexable, but *immutable*
 - \(\text{pix} = (255, 0, 0) \)
 - What is \(\text{pix} \), \(\text{pix}[0] \)? What is \(\text{pix}[5] \)?
- Invert a pixel: by subscript or named tuple
 - Access by assignment to variables!

 \[
 \text{npx} = (255-\text{pix}[0], 255-\text{pix}[1], 255-\text{pix}[2])
 \]

\[
(r, g, b) = \text{pix} \\
\text{npx} = (255-r, 255-g, 255-b)
\]

Let's look at GrayScale.py

- Key features we see
 - Import Image library, use API by example
 - `Image.open` creates an image object
- `Image` functions for `Image` object `im`
 - `im.show()`, displays image on screen
 - `im.save("xy")`, saves with filename
 - `im.copy()`, returns image that's a copy
 - `im.load()`, [x,y] indexable pixel collection
 - `im.getdata()`, iterable pixel collection
- Let's look at two ways to process pixels!

Pixels in an image

Background is black, 12x9

Image Library: open, modify, save

- `Image.open` can open most image files
 - .png, .jpg, .gif, and more
 - Returns an image object, so store in variable of type `Image` instance
 - Get pixels with `im.getdata()` or `im.load()`
- `Image.new` can create a new image, specify color model "RGB" and size of image
 - Add pixels with `im.putdata()`

- These belong to `Image` package
im.getdata(), accessing pixels

- Returns something like a list
 - Use: for pix in im.getdata():
 - Generates pixels on-the-fly, can't slice or index unless you use list(im.getdata())
 - Structure is called a Python generator!
 - Saves on storing all pixels in memory if only accessed one-at-a-time

- See usage in GrayScale.py, note how used in list comprehension, like a list!

Alternate: Still Tuples and Pixels

- The im.getdata() function returns list-like iterable
 - Can use in list comprehension, see code
 - Use .putdata() to store again in image

```python
def makeGray(pixel):
    r, g, b = pixel
    gray = (r+g+b)/3
    return (gray, gray, gray)
```

```python
def grayit2(picname):
    im = Image.open(picname)
    im.show()
    pixels = [makeGray(pix) for pix in im.getdata()]
    nim = Image.new("RGB", im.size)
    nim.putdata(pixels)
    nim.show()
    nim.save("gray"+picname)
```

Making Tuples and Generators

- Overuse and abuse of parentheses
 - To create a tuple, use parentheses
    ```python
    for pix in im.getdata():
        (r,g,b) = pix
        npx = (255-r,255-g,255-b)
    ```
 - To create a generator use parentheses as though creating a list comprehension!
    ```python
    [2*n for n in range(10000)]
    (2*n for n in range(10000))
    ```

- See this in PyDev console