Announcements

- Regrades Exam 2 – submit by Thursday, Dec 7
- Regrades for Asg 1-5, APT 1-7 by Dec 8
 - Check your grades! RQ too!
- Assign 8 due today, last late day Dec 8!
- APT 8 due Thursday, Dec 7, last late day, Dec 10!
- Assign 9 – due Dec 11, no late after this date
- Final Exam:
 - Sec 01 Thur, Dec 14, 9am, LSRC B101
 - Sec 02 Sat, Dec 16, 2pm, LSRC B101
 - Get accommodations? Fill out for Final Exam

Calculate Your Grade

- From “About” tab on course web page

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>5%</td>
</tr>
<tr>
<td>Reading Quizzes</td>
<td>5%</td>
</tr>
<tr>
<td>Lecture Group work</td>
<td>5%</td>
</tr>
<tr>
<td>Apts</td>
<td>12%</td>
</tr>
<tr>
<td>Programming Assignments</td>
<td>12%</td>
</tr>
<tr>
<td>APT Quizzes</td>
<td>6%</td>
</tr>
<tr>
<td>Two Midterm Exams</td>
<td>30%</td>
</tr>
<tr>
<td>final exam</td>
<td>25%</td>
</tr>
</tbody>
</table>

More on Grades

- Lecture – ignore the first two weeks (drop/add period), plus drop 4 points
- Reading Quizzes – will drop 30 points
 - Check your grades to make sure they copied over – fill out duke oit help form if they are wrong
- Lab – drop 6 points (each lab is 4 pts)
 - 44 pts total– 38 pts is 100%
 - Lab 11 covers two new topics!
More Announcements

• Be a UTA for CompSci 101
 – Rewarding and Learning Experience
 – Apply: see link in Sakai announcement

• Today:
 – Finish from last time
 – Why are dictionaries so fast?
 – More on Recursion, Regex
 – More on Sorting and analyzing it

Answer Questions
bit.ly/101f17-1205-1
SortByFreqs APT
Sort items by their frequency, break ties alphabetically

```python
data = ["apple", "pear", "cherry", "apple", "pear", "apple", "banana"]

Returns: ["apple", "pear", "banana", "cherry"]
```

Review Recursion and Regex
bit.ly/101f17-1205-2

Dictionary Comprehension

• List comprehension - builds a new list
• Dictionary comprehension - builds a new dictionary

• Format

 \[d = \{ \text{key:value for key in somelist if} \} \]
Why are dictionaries so fast?

- They use a technique called hashing
- Each key is converted to hopefully a unique storage location address.
- Then each key’s value can be found quickly by indexing to that location
- A dictionary may really be a list underneath, its how you use the list….

Simple Example Hashing
Want a mapping of Soc Sec Num to Names

- Duke’s ACM Chapter wants to be able to quickly find out info about its members. Also add, delete and update members. Doesn’t need members sorted.
- Hash Table size is 0 to 10
- Possible Hash Function: $H(ssn) = \text{last 2 digits mod 11}$
Have a list of size 11 from 0 to 10

- Insert these into the list
- Insert as (key, value) tuple
(267-89-5431, John Smith)
(in example, only showing name)

Hashing, dictionaries
bit.ly/101f17-1205-3

Review:
Sorting with itemgetter

- We can write: import operator
 - Then use key=operator.itemgetter(…)
- We can write: from operator import itemgetter
 - Then use key=itemgetter(…)

Review Example with itemgetter

- Because sort is stable sort first on tie-breaker, then that order is fixed since stable

```python
a0 = sorted(data, key=operator.itemgetter(0))
a1 = sorted(a0, key=operator.itemgetter(2))
a2 = sorted(a1, key=operator.itemgetter(1))
data = [('f', 2, 0), ('c', 2, 5), ('b', 3, 0), ('e', 1, 4), ('a', 2, 0), ('d', 2, 4)]
a0 = [('a', 2, 0), ('b', 3, 0), ('c', 2, 5), ('d', 2, 4), ('e', 1, 4), ('f', 2, 0)]
a1 = [('a', 2, 0), ('b', 3, 0), ('c', 2, 5), ('d', 2, 4), ('e', 1, 4), ('f', 2, 0), ('g', 1, 1), ('h', 0, 0)]
a2 = [('a', 2, 0), ('b', 3, 0), ('c', 2, 5), ('d', 2, 4), ('e', 1, 4), ('f', 2, 0), ('g', 1, 1), ('h', 0, 0)]
```
Two-pass (or more) sorting

\begin{verbatim}
a0 = sorted(data, key=operator.itemgetter(0))
a1 = sorted(a0, key=operator.itemgetter(2))
a2 = sorted(a1, key=operator.itemgetter(1))
a0
[('a', 2, 0), ('b', 3, 0), ('c', 2, 5), ('d', 2, 4), ('e', 1, 4), ('f', 2, 0)]
\end{verbatim}

\begin{verbatim}
a1
[('a', 2, 0), ('b', 3, 0), ('f', 2, 0), ('d', 2, 4), ('e', 1, 4), ('c', 2, 5)]
\end{verbatim}

\begin{verbatim}
a2
[('e', 1, 4), ('a', 2, 0), ('f', 2, 0), ('d', 2, 4), ('c', 2, 5), ('b', 3, 0)]
\end{verbatim}

Stable, Stability

- What does the search query 'stable sort' show us?
 - Image search explained
 - First shape, then color: for equal colors?

Stable sorting: respect re-order

- Women before men ...
 - First sort by height, then sort by gender

Answer Questions

bit.ly/101f17-1205-4

MedalTable APT
Sort items by their frequency, then sorted in frequencies.

["ITA JPN AUS", "KOR TPE UKR", "KOR KOR GBR", "KOR CHN TPE"]
Returns:
["KOR 3 1 0", "ITA 1 0 0", "TPE 0 1 1", "CHN 0 1 0", "JPN 0 1 0", "AUS 0 0 1", "GBR 0 0 1", "UKR 0 0 1"]
Sorting

• In python:
 – `alist = [8, 5, 2, 3, 1, 6, 4]`
 – `alist.sort()` OR `result = sorted(alist)`
 – Now `alist` OR `result` is `[1, 2, 3, 4, 5, 6, 8]`
• How does one sort elements in order? How does “sort” work?

Selection Sort

• Sort a list of numbers.
• Idea:
 – Repeat til sorted
 • Find the smallest element in part of list not sorted
 • Put it where it belongs in sorted order.
 • Swap it with the element where it should be
• Sort example

Example: Selection Sort

• Sort the list of numbers using Selection Sort.
• The body of the loop is one pass.
• Show the elements after each pass.
• 9, 5, 4, 1, 3, 6

Selection Sort

• Sort the list of numbers using Selection Sort.
• The body of the loop is one pass.
• Show the elements after each pass.
• 6, 4, 9, 7, 1, 3

Sorted, won’t move final position

???
Code for Selection Sort

def selectsort(data):
 for i in range(len(data)):
 mindex = minindex(i) # swap elements at indexes i and mindex
 tmp = data[i]
 data[i] = data[mindex]
 data[mindex] = tmp

Bubble Sort

• Sort a list of numbers.
• Idea:
 – Repeat til sorted
 • Compare all adjacent pairs, one at a time. If out of order then swap them
• Sort example

<table>
<thead>
<tr>
<th>???</th>
<th>Sorted, won’t move final position</th>
</tr>
</thead>
</table>

Bubble Sort

bit.ly/101f17-1205-6

• Sort the list of numbers using BubbleSort.
• The body of the loop is one pass.
• Show the elements after each pass.
• [6, 4, 9, 7, 1, 3]

Bubble Sort – red area sorted

6 4 9 7 1 3	- compare, swap
4 6 9 7 1 3	- compare, no swap
4 6 7 9 1 3	- compare, swap
4 6 7 1 9 3	- compare, swap
4 6 7 1 3 9	- end of 1st pass
4 6 7 1 3 9	