Trees

- Snarf the code for today’s class
- and start looking at the code

Today

- Binary search tree (BST) review
- Adding nodes to a BST
- Practice with BSTs and recursion
Binary Tree

```java
IntTreeNode root = null;

public class IntTreeNode {
    public int value;
    public IntTreeNode left; // holds smaller tree nodes
    public IntTreeNode right; // holds larger tree nodes

    public IntTreeNode(int val) { value = val; }
}
```

Binary Search Tree

- Each node has a value
- Nodes with values **less than** their parent are in the **left** subtree
- Nodes with values **greater than**, or equal to their parent are in the **right** subtree
Which is a binary search tree?

A

B

C

Question

- How long does it take to add n nodes into a binary search tree?

- Code time!
Question

- How long does it take to add \(n \) nodes into a binary search tree?
 - \(O(\text{tree height}) \)
 - Complete binary tree: \(O(\lg(N)) \)
 - Worst case: \(O(N) \)
 - (Amortized) Average: \(O(\lg(N)) \)

- How do we keep the tree height small?

Amortized analysis

- The time required to perform a sequence of data-structure operations averaged over all the operations performed

- What do you need to know?
Code time

- Snarf the Recitation 8 code
- Complete the Recitation 8 assignment from the webpage