CompSci 102
Discrete Math for Computer Science

Announcements
• Read for next time Chap. 1.1-1.3
• Recitations start Friday, Aug 30
• Add yourself to CompSci 230 on Piazza

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

August 29, 2013

Prof. Rodger

Last Time
• The Pancake Problem
 – Showed 4 flips necessary to flip this stack
 – $P_n =$ number of flips required to sort a worst case stack of n pancakes
 – Lower and upper bounds
 • Bring to Top Method gave us an upper bound.
 • Break Apart Method gave us a lower bound.
 • $n \leq P_n \leq 2n - 3$
 • Want the largest lower bound and the smallest upperbound
 – $P_5 = 5$. Will explore more in recitation

Logic King of them All
1. If I'm doing better than you, you're a noob.
2. If you're doing better than me, you have no life.
3. If everyone is doing better than me, I have lag.

Logic Problem

- On one side of the river you have:
 - You, goat, head of cabbage, wolf
- You can’t leave the wolf with the goat, and you can’t leave the goat with the cabbage.
- You have a boat that can only hold two of you.
- How do you get everyone across the river?

Xkcd boat logic

Logic

- Rules of logic specify meaning of mathematical statements
- How do you understand:
 \[\forall n > 0 \, \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]
- Applications in CS
 - Designing computers
 - Designing programming languages
 - Correctness of programs
 - Many areas such as artificial intelligence
How old …..

• Aristotle developed propositional logic over 2000 years ago….

• George Boole wrote “The Mathematical Analysis of Logic” in 1848

Proposition

• A **proposition** is a sentence that declares a fact that is true or false

• A **theorem** is a proposition that is guaranteed by a proof

Examples of Propositions

• Which are propositions? What is their value?
 1. Duke won the NCAA men’s basketball title in 2010.
 2. $3x > 2$
 3. Clean up after yourself.
 4. Durham is the capital of NC.
 5. Pepsi was invented in New Bern NC in 1898.
 6. $8 + 3 = 11$

A Proof Example

• **Theorem:** *(Pythagorean Theorem of Euclidean geometry)* For any real numbers a, b, and c, if a and b are the base-length and height of a right triangle, and c is the length of its hypotenuse, then $a^2 + b^2 = c^2$.

• **Proof?**
Proof of Pythagorean Theorem

- **Proof.** Consider the below diagram:

![Diagram](image_url)

- Exterior square area = c^2, the sum of the following regions:
 - The area of the 4 triangles = $4(\frac{1}{2}ab) = 2ab$
 - The area of the small interior square = $(b-a)^2 = b^2 - 2ab + a^2$.
- Thus, $c^2 = 2ab + (b^2 - 2ab + a^2) = a^2 + b^2$. ■

Operators / Connectives

An operator or connective combines one or more operand expressions into a larger expression. (E.g., “+” in numeric exprs.)

- **Unary** operators take 1 operand (e.g., -3);
- **binary** operators take 2 operands (e.g., 3×4).
- **Propositional** or **Boolean** operators operate on propositions (or their truth values) instead of on numbers.

Some Popular Boolean Operators

<table>
<thead>
<tr>
<th>Formal Name</th>
<th>Nickname</th>
<th>Arity</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negation operator</td>
<td>NOT</td>
<td>Unary</td>
<td>¬</td>
</tr>
<tr>
<td>Conjunction operator</td>
<td>AND</td>
<td>Binary</td>
<td>∧</td>
</tr>
<tr>
<td>Disjunction operator</td>
<td>OR</td>
<td>Binary</td>
<td>∨</td>
</tr>
<tr>
<td>Exclusive-OR operator</td>
<td>XOR</td>
<td>Binary</td>
<td>⊕</td>
</tr>
<tr>
<td>Implication operator</td>
<td>IMPLIES</td>
<td>Binary</td>
<td>→</td>
</tr>
<tr>
<td>Biconditional operator</td>
<td>IFF</td>
<td>Binary</td>
<td>↔</td>
</tr>
</tbody>
</table>
The Negation Operator

The unary *negation operator* “¬” (NOT) transforms a prop. into its logical *negation*.

E.g. If \(p = \text{“I have brown hair.”} \)

then \(\neg p = \text{“I do not have brown hair.”} \)

The *truth table* for NOT:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

\(T \) : \(\equiv \) True; \(F \) : \(\equiv \) False

“\(:\)” means “is defined as”

The Conjunction Operator

The binary *conjunction operator* “\(\land \)” (AND) combines two propositions to form their logical *conjunction*.

E.g. If \(p=\text{“I will have salad for lunch.”} \) and \(q=\text{“I will have steak for dinner.”}, \) then

\(p \land q=\text{“I will have salad for lunch and I will have steak for dinner.”} \)

Remember: “\(\land \)” points up like an “A”, and it means “\(\land \text{AND} \)”

Conjunction Truth Table

- A conjunction of \(n \) propositions will have how many rows in its truth table?
- Note: \(\neg \) and \(\land \) operations together are sufficient to express *any* Boolean truth table!

<table>
<thead>
<tr>
<th>(p \land q)</th>
<th>(p)</th>
<th>(q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

The Disjunction Operator

The binary *disjunction operator* “\(\lor \)” (OR) combines two propositions to form their logical *disjunction*.

\(p=\text{“My car has a bad engine.”} \) \nm\(q=\text{“My car has a bad carburetor.”} \)

\(p \lor q=\text{“Either my car has a bad engine, or my car has a bad carburetor.”} \)

Meaning is like “\(\land \text{AND} \)” in English.
• Note that $p \lor q$ means that p is true, or q is true, or both are true!

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Note difference from AND

• So, this operation is also called inclusive or, because it includes the possibility that both p and q are true.

• “¬” and “∨” together are also universal.

Nested Propositional Expressions

• Use parentheses to group sub-expressions: “I just saw my old friend, and either he’s grown or I’ve shrunk.” = $f \land (g \lor s)$

 $-(f \land g) \lor s$ would mean something different
 $f \land g \lor s$ would be ambiguous

• By convention, “¬” takes precedence over both “∧” and “∨”.

 $-s \land f$ means $(s) \land f$, not $(s \land f)$

A Simple Exercise

Let p = “It rained last night”,
q = “The sprinklers came on last night,”
r = “The lawn was wet this morning.”

Translate each of the following into English:

$\neg p$ = “It didn’t rain last night.”
$r \land \neg p$ = “The lawn was wet this morning, and it didn’t rain last night.”
$\neg r \lor p \lor q$ = “Either the lawn wasn’t wet this morning, or it rained last night, or the sprinklers came on last night.”
The *Exclusive Or Operator*

The binary *exclusive-or operator* “⊕” (XOR) combines two propositions to form their logical “exclusive or” (exjunction?).

\[p = \text{“I will earn an A in this course,”} \]
\[q = \text{“I will drop this course,”} \]
\[p \oplus q = \]

Exclusive-Or Truth Table

- Note that \(p \oplus q \) means that \(p \) is true, or \(q \) is true, but **not both**!
- This operation is called *exclusive or*, because it excludes the possibility that both \(p \) and \(q \) are true.
- “¬” and “⊕” together are **not** universal.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \oplus q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Exclusive-Or Truth Table

- Note that \(p \oplus q \) means that \(p \) is true, or \(q \) is true, but **not both**!
- This operation is called *exclusive or*, because it excludes the possibility that both \(p \) and \(q \) are true.
- “¬” and “⊕” together are **not** universal.
Natural Language is Ambiguous

Note that English “or” can be ambiguous regarding the “both” case!

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p "or" q</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>?</td>
</tr>
</tbody>
</table>

“Pat is a singer or Pat is a writer.”
“Pat is a man or Pat is a woman.”
Need context to disambiguate the meaning!
For this class, assume “or” means inclusive.

The Implication Operator

The implication $p \rightarrow q$ states that p implies q.

I.e., if p is true, then q is true; but if p is not true, then q could be either true or false.

E.g., let $p =$ “You study hard.”
$q =$ “You will get a good grade.”
$p \rightarrow q =$ “If you study hard, then you will get a good grade.” (else, it could go either way)

Implication Truth Table

- $p \rightarrow q$ is false only when p is true but q is not true.
- $p \rightarrow q$ does not say that p causes q!
- $p \rightarrow q$ does not require that p or q are ever true!
- E.g. “(1=0) \rightarrow pigs can fly” is
Implication Truth Table

- \(p \rightarrow q \) is **false** only when \(p \) is true but \(q \) is **not** true.
- \(p \rightarrow q \) does **not** say that \(p \) **causes** \(q \).
- \(p \rightarrow q \) does **not** require that \(p \) or \(q \) are **ever true**!
- E.g. \((1=0) \rightarrow \) pigs can fly” is **TRUE**!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

The only False case!

Examples of Implications

- “If this lecture ever ends, then the sun will rise tomorrow.” **True or False?**
- “If Tuesday is a day of the week, then I am a penguin.” **True or False?**
- “If 1+1=6, then Obama is president.” **True or False?**
- “If the moon is made of green cheese, then I am richer than Bill Gates.” **True or False?**

Why does this seem wrong?

- Consider a sentence like,
 - “If I wear a red shirt tomorrow, then I will win the lottery!”
- In logic, we consider the sentence **True** so long as either I don’t wear a red shirt, or I win the lottery.
- But, in normal English conversation, if I were to make this claim, you would think that I was lying.
 - Why this discrepancy between logic & language?

Resolving the Discrepancy

- In English, a sentence “if \(p \) then \(q \)” usually really implicitly means something like,
 - “In all possible situations, if \(p \) then \(q \).”
 - That is, “For \(p \) to be true and \(q \) false is impossible.”
 - Or, “I guarantee that no matter what, if \(p \), then \(q \).”
- This can be expressed in **predicate logic** as:
 - “For all situations \(s \), if \(p \) is true in situation \(s \), then \(q \) is also true in situation \(s \)”
 - Formally, we could write: \(\forall s, P(s) \rightarrow Q(s) \)
- That sentence is logically **False** in our example, because for me to wear a red shirt and for me to not win the lottery is a **possible** (even if not actual) situation.
 - Natural language and logic then agree with each other.
English Phrases Meaning $p \rightarrow q$

- “p implies q”
- “if p, then q”
- “p, q”
- “when p, q”
- “whenever p, q”
- “q if p”
- “q when p”
- “q whenever p”

Converse, Inverse, Contrapositive

Some terminology, for an implication $p \rightarrow q$:

- Its converse is: $q \rightarrow p$.
- Its inverse is: $\neg p \rightarrow \neg q$.
- Its contrapositive: $\neg q \rightarrow \neg p$.

One of these three has the same meaning (same truth table) as $p \rightarrow q$. Can you figure out which?

How do we know for sure?

Proving the equivalence of $p \rightarrow q$ and $\neg q \rightarrow \neg p$ using truth tables:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg q$</th>
<th>$\neg p$</th>
<th>$p \rightarrow q$</th>
<th>$\neg q \rightarrow \neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The biconditional operator

The biconditional \(p \iff q \) states that \(p \) is true if and only if (IFF) \(q \) is true.
When we say \(P \) if and only if \(q \), we are saying that \(P \) says the same thing as \(Q \).
Examples?
Truth table?

Biconditional Truth Table

\[
\begin{array}{c|cc}
 p & q & p \iff q \\
\hline
 F & F & T \\
 F & T & F \\
 T & F & F \\
 T & T & T \\
\end{array}
\]

- \(p \iff q \) means that \(p \) and \(q \) have the same truth value.
- Note this truth table is the exact opposite of \(\oplus \)'s!
 Thus, \(p \iff q \) means \(\neg(p \oplus q) \)
- \(p \iff q \) does not imply that \(p \) and \(q \) are true, or that either of them causes the other, or that they have a common cause.

Boolean Operations Summary

- We have seen 1 unary operator and 5 binary operators. Their truth tables are below.

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg p)</th>
<th>(p \land q)</th>
<th>(p \lor q)</th>
<th>(p \oplus q)</th>
<th>(p \rightarrow q)</th>
<th>(p \iff q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Some Alternative Notations

<table>
<thead>
<tr>
<th>Name:</th>
<th>not</th>
<th>and</th>
<th>or</th>
<th>xor</th>
<th>implies</th>
<th>iff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic:</td>
<td>(\neg)</td>
<td>(\land)</td>
<td>(\lor)</td>
<td>(\oplus)</td>
<td>(\rightarrow)</td>
<td>(\iff)</td>
</tr>
<tr>
<td>Boolean algebra:</td>
<td>(\overline{p})</td>
<td>(pq)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/C++/Java (wordwise):</td>
<td>!</td>
<td>& &</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/C++/Java (bitwise):</td>
<td>(\sim)</td>
<td>&</td>
<td></td>
<td>^</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic gates:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>