Functions

• Section 2.3

Definition: Let A and B be nonempty sets. A function f from A to B, denoted $f: A \rightarrow B$, is an assignment of each element of A to exactly one element of B. We write $f(a) = b$ if b is the unique element of B assigned by the function f to the element a of A.

• Functions are sometimes called mappings or transformations.

Is each element of B assigned only once?

<table>
<thead>
<tr>
<th>Students</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlota Rodriguez</td>
<td>A</td>
</tr>
<tr>
<td>Sandeep Patel</td>
<td>B</td>
</tr>
<tr>
<td>Jalen Williams</td>
<td>C</td>
</tr>
<tr>
<td>Kathy Scott</td>
<td>D</td>
</tr>
</tbody>
</table>

Functions

• A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$ (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.

Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$\forall x [x \in A \rightarrow \exists y [y \in B \land (x, y) \in f]]$

and

$\forall x \forall y_1 \forall y_2 [((x, y_1) \in f \land (x, y_2) \in f) \rightarrow y_1 = y_2]$

What do the logical expressions say?

Representing Functions

• Functions may be specified in different ways:
 – An explicit statement of the assignment.
 Previous students and grades example.
 – A formula.
 $f(x) = x + 1$
 – A computer program.
 • A Java program that when given an integer n, produces the nth Fibonacci Number (covered later)

Questions

$f(a) = ?$

The image of d is ?

The domain of f is ?

The codomain of f is ?

The preimage of y is ?

$f(A) = ?$

The preimage(s) of z is (are) ?
Question on Functions and Sets

- If \(f : A \rightarrow B \) and \(S \) is a subset of \(A \), then \(f(S) = \{ f(s) | s \in S \} \)

\[f\{a,b,c,\} \text{ is ?} \]
\[f\{c,d\} \text{ is ?} \]

Injections

Definition: A function \(f \) is said to be **one-to-one**, or **injective**, if and only if \(f(a) = f(b) \) implies that \(a = b \) for all \(a \) and \(b \) in the domain of \(f \). A function is said to be an injection if it is one-to-one.

Surjections

Definition: A function \(f \) from \(A \) to \(B \) is called **onto** or **surjective**, if and only if for every element \(b \in B \) there is an element \(a \in A \) with \(f(a) = b \). A function \(f \) is called a surjection if it is onto.

Bijections

Definition: A function \(f \) is a **one-to-one correspondence**, or a bijection, if it is both one-to-one and onto (surjective and injective).
Showing that \(f \) is one-to-one or onto

Suppose that \(f : A \to B \).

To show that \(f \) is injective
Show that if \(f(x) = f(y) \) for arbitrary \(x, y \in A \) with \(x \neq y \), then \(x = y \).

To show that \(f \) is not injective
Find particular elements \(x, y \in A \) such that \(x \neq y \) and \(f(x) = f(y) \).

To show that \(f \) is surjective
Consider an arbitrary element \(y \in B \) and find an element \(x \in A \) such that \(f(x) = y \).

To show that \(f \) is not surjective
Find a particular \(y \in B \) such that \(f(x) \neq y \) for all \(x \in A \).

Showing that \(f \) is one-to-one or onto

Example 1: Let \(f \) be the function from \(\{a,b,c,d\} \) to \(\{1,2,3\} \) defined by \(f(a) = 3, f(b) = 2, f(c) = 1, \) and \(f(d) = 3 \). Is \(f \) one-to-one? Is \(f \) an onto function?

Solution:

Example 2: Is the function \(f(x) = x^2 \) from the set of integers one-to-one? Is \(f \) onto?

Solution

Horizontal line test

- If a horizontal line intersects \(f \) in more than one point, then not 1-1

Inverse Functions

Definition: Let \(f \) be a bijection from \(A \) to \(B \). Then the *inverse* of \(f \), denoted \(f^{-1} \), is the function from \(B \) to \(A \) defined as

\[
f^{-1}(y) = x \iff f(x) = y
\]

No inverse exists unless \(f \) is a bijection. Why?
Inverse Functions

Example 1: Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a) = 2$, $f(b) = 3$, and $f(c) = 1$. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

Example 2: Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be such that $f(x) = 2x + 1$. Is f invertible, and if so, what is its inverse?

Solution: f is NOT invertible since it is not onto.

$f^{-1}(y) = (y - 1)/2$.

Example 2 again: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x) = 2x + 1$. Is f invertible?

Solution: The function f is invertible because it is a one-to-one correspondence.

Example 3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?

Solution: f is not invertible because it is not one-to-one.
Composition

Definition: Let \(f: B \to C \), \(g: A \to B \). The composition of \(f \) with \(g \), denoted \(f \circ g \), is the function from \(A \) to \(C \) defined by

\[
f \circ g(x) = f(g(x))
\]

Example 1: If \(f(x) = x^2 \) and \(g(x) = 2x + 1 \) then

\[
f(g(x)) =
\]

and \(g(f(x)) = \)

Composition Questions

Example 2: Let \(g \) be the function from the set \(\{a,b,c\} \) to itself such that \(g(a) = b, g(b) = c, \) and \(g(c) = a \). Let \(f \) be the function from the set \(\{a,b,c\} \) to the set \(\{1,2,3\} \) such that \(f(a) = 3, f(b) = 2, \) and \(f(c) = 1 \). What is the composition of \(f \) and \(g \), and what is the composition of \(g \) and \(f \).
Composition Questions

Example 3: Let \(f \) and \(g \) be functions from the set of integers to the set of integers defined by \(f(x) = 2x + 3 \) and \(g(x) = 3x + 2 \). What is the composition of \(f \) and \(g \), and also the composition of \(g \) and \(f \)?

Solution:

\[
\begin{align*}
f \circ (g(x)) &= f\left(\left[3x + 2\right]\right) \\
&= \left[3(3x + 2) + 3\right] \\
&= \left[9x + 9\right] \\
&= 3x + 3
\end{align*}
\]

\[
\begin{align*}
g \circ (f(x)) &= g\left(\left[2x + 3\right]\right) \\
&= \left[3(2x + 3) + 2\right] \\
&= \left[6x + 11\right] \\
&= 2x + 3 + 1
\end{align*}
\]

Graphs of Functions

- Let \(f \) be a function from the set \(A \) to the set \(B \). The **graph** of the function \(f \) is the set of ordered pairs \(\{(a, b) | a \in A \text{ and } f(a) = b\} \).

Some Important Functions

- The **floor** function, denoted \(\lfloor x \rfloor \) is the largest integer less than or equal to \(x \).

- The **ceiling** function, denoted \(\lceil x \rceil \) is the smallest integer greater than or equal to \(x \).

Example: \(\lfloor 3.5 \rfloor = 4 \quad \lceil 3.5 \rceil = 3 \)

\(\lfloor -1.5 \rfloor = -1 \quad \lceil -1.5 \rceil = -2 \)

Floor and Ceiling Functions

- Graph of \(f(n) = 2n + 1 \) from \(\mathbb{Z} \) to \(\mathbb{Z} \)
- Graph of \(f(x) = x^2 \) from \(\mathbb{Z} \) to \(\mathbb{Z} \)

Graph of (a) Floor and (b) Ceiling Functions
Floor and Ceiling Functions

| TABLE 1 Useful Properties of the Floor and Ceiling Functions. |
|---|---|
| (1a) [x] = n if and only if n ≤ x < n + 1 |
| (1b) [x] = n if and only if n - 1 < x ≤ n |
| (1c) [x] = n if and only if x - 1 < n ≤ x |
| (1d) [x] = n if and only if x ≤ n < x + 1 |
| (2) x - 1 < [x] ≤ x ≤ [x] < x + 1 |

Example: Prove that if x is a real number, then [2x] = [x] + [x + 1/2]

Factorial Function

Definition: f: N → Z⁺, denoted by f(n) = n!, is the product of the first n positive integers when n is a nonnegative integer.

\[f(n) = 1 \cdot 2 \cdots (n - 1) \cdot n, \quad f(0) = 0! = 1 \]

Examples:

\[f(1) = 1! = 1 \]
\[f(2) = 2! = 1 \cdot 2 = 2 \]
\[f(6) = 6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720 \]
\[f(20) = 2,432,902,008,176,640,000. \]

Partial Functions

Definition: A partial function f from a set A to a set B is an assignment to each element a in a subset of A, called the domain of definition of f, of a unique element b in B.

- The sets A and B are called the domain and codomain of f, respectively.
- We say that f is undefined for elements in A that are not in the domain of definition of f.
- When the domain of definition of f equals A, we say that f is a total function.

Example: f: Z → R where f(n) = √n is a partial function from Z to R where the domain of definition is the set of nonnegative integers. Note that f is undefined for negative integers.