Announcements

- We will use the software JFLAP for DFAs
 - Download from jflap.org
 - Preview of Compsci 334!
- Read for next time Chap. 2.5-2.6
- Homework 3 due Tuesday
- Recitation Friday and Monday
 - Bring laptop to recitation this time

Deterministic Finite Automaton
(a simple machine)

• How does it process the string: 0111
• Does it accept the string?
Simulate 0111 – remaining: 111

Simulate 0111 – remaining: 11

Simulate 0111 – remaining: 1

Simulate 0111 – Accept!
Anatomy of Deterministic Finite Automaton (DFA)

- Circles are states
- Big arrow start state
- Double circles – final states (finish)
- The alphabet is the set of symbols allowed

L(M) = Language of machine M

- For this DFA M
 L(M) =

What is L(M)?

- L(M) =

Notation

- An alphabet \(\Sigma \) is a finite set (e.g. \(\Sigma = \{0,1\} \))
- A string over \(\Sigma \) is a finite-length sequence of elements of \(\Sigma \)
- For a string \(x \), \(|x|\) is the length of \(x \)
- The empty string will be denoted by \(\lambda \).
 - \(|\lambda| = 0\)
 - Some books use the symbol \(\varepsilon \)
- A language over \(\Sigma \) is a set of strings over \(\Sigma \)
Formal Definition of DFA

- A DFA is a 5-tuple $M=(Q, \Sigma, \delta, q_0, F)$
 - Q is a finite set of states
 - Σ is the alphabet, a finite set
 - $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final (or accept) states

$L(M) =$ the language of machine M
 = the set of all strings machine M accepts

Example: $M=(Q, \Sigma, \delta, q_0, F)$

- $Q =$
- $\Sigma =$
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- Start state is
- $F =$

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>q_2</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_0</td>
<td>q_2</td>
</tr>
</tbody>
</table>

Build a DFA that accepts all and only those strings that contain 001

Regular Language

- A language is regular if it is recognized (accepted) by a DFA
 - $L = \{w \mid w \text{ contains 001}\}$ is regular
 - $L = \{w \mid w \text{ has an even number of 1's}\}$ is regular
Union theorem

• Given two languages \(L_1 \) and \(L_2 \), define the union of \(L_1 \) and \(L_2 \) as

\[
L_1 \cup L_2 = \{w | w \in L_1 \text{ or } w \in L_2\}
\]

• Theorem: The union of two regular languages is also a regular language.

Theorem: The union of two regular languages is also a regular language

• Proof sketch: Let

\[
M_1 = (Q_1, \Sigma, \delta_1, s_0, F_1) \text{ be a DFA for } L_1
\]

\[
M_2 = (Q_2, \Sigma, \delta_2, p_0, F_2) \text{ be a DFA for } L_2
\]

• We want to construct a DFA

\[
M = (Q, \Sigma, \delta, q_0, F) \text{ such that } L = L_1 \cup L_2
\]

• IDEA: Run \(M_1 \) and \(M_2 \) at the same time

\[
Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2
\]

\[
= \{(s_i, p_j) \mid s_i \in Q_1 \text{ and } p_j \in Q_2\}
\]

Example: Compute the union of:

Example: Compute the intersection of
Theorem: The union of two regular languages is also a regular language

• Corollary: Any finite language is regular.

Regular operations

• Union: $A \cup B = \{w \mid w \in A \text{ or } w \in B\}$
• Intersection: $A \cap B = \{w \mid w \in A \text{ and } w \in B\}$
• Reverse: $A^R = \{w_1 \ldots w_k \mid w_k \ldots w_1 \in A\}$
• Negation: $\neg A = \{w \mid w \notin A\}$
• Concatenation: $A \cdot B = \{vw \mid v \in A \text{ and } w \in B\}$
• Star: $A^* = \{w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A\}$

Regular languages are closed under the regular operations

• We saw part of the proof for union.
• Proof for intersection is similar
• Proof for negation is easy.

The “Grep” Problem

• Input: Text T of length t, string S of length n
• Problem: Does string S appear inside text T?
• Naïve method:

\[
\begin{array}{cccccc}
 a_1 & a_2 & a_3 & a_4 & a_5 & \ldots & a_t \\
\end{array}
\]

• Cost:
Automata Solution

Build a DFA M that accepts any string with S as a consecutive substring
Feed the text to M
Cost:

Real Life Uses of DFAs

- Grep
- Coke machines
- Thermostats (fridge)
- Elevators
- Train track switches
- Lexical Analyzers for Parsers (starting phase of a compiler)

Consider the language $L = \{a^n b^n | n > 0\}$

- A bunch of a’s followed by the same number of b’s.

Another Example

- $L = \{a^n b^n | n > 0\}$
- Is this regular?
- Can you build a DFA for this?
- Is this just like the previous problem?
Let’s look at a formal proof, but first

Pigeonhole Principle
- Given n boxes and m > n objects, at least one box must contain more than one object.

Letterbox principle
- If the average number of letters per box is x, then some box will have at least x letters.

Theorem: \(\{a_n b_n \mid n > 0\} \) is not regular
- Proof (by contradiction):
 - Assume L is regular
 - \(\exists \) DFA M with k states that accepts L
 - For each \(0 \leq i \leq k \), let \(S_i \) be the state M is in after reading \(a_i \)
 - \(\exists i, j \leq k \) such that \(S_i = S_j \), but \(i \neq j \)

A similar problem to \(\{a^n b^n \mid n > 0\} \)
- Given an arithmetic expression, are there an equal number of left and right parentheses?
- \((x + (3 \times y + (4 - x) + (y \times 6))) \)

Study Bee
- Deterministic Finite Automata (DFA)
 - Definition
 - Testing if they accept a string
 - Building automata
- Regular Languages
 - Definition
 - Closed under Union, Intersection, Negation
 - Using Pigeonhole principle to show language is not regular