CompSci 230
Discrete Math for Computer Science

\[
\begin{bmatrix}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & -1
\end{bmatrix} \begin{bmatrix}
J \\
M \\
S
\end{bmatrix} = \begin{bmatrix}
100 \\
40 \\
0
\end{bmatrix}
\]

Sep 26, 2013
Prof. Rodger

Slides modified from Rosen

Announcements

• Exam 1 is Tuesday, Oct. 1
• No class, Oct 3, No recitation Oct 4-7
• Prof. Rodger is out Sep 30-Oct 4
• There is Recitation: Sept 27-30.

Test 1

• Closed book, closed notes, closed neighbor
• There will be a handout of formulas supplied
• Topics:
 – Reading covers - Chap. 1, 2, and 13.3
 – Logic, Sets, Functions, Sequences, Cardinality, Matrices, DFA

Ways to Study

• Rework problems in lecture
• Rework problems from recitation
• Rework problems from old test
• Try examples using JFLAP
 – Write a DFA over \{a,b\} that has the number of b’s divisible by 3.
 – Write a DFA over \{a,b\} that accepts strings with “aa” and the number of b’s are divisible by 3
• Ask questions on piazza
 – Answer questions on piazza
Chap 2.5 Cardinality

How many elements? Can you list them in an ordered way so you don’t miss any of them?

- \(\{x \in \mathbb{Z} | x \mod 5 = 0, \text{ and } 0 < x \leq 100\} \)

- \(\{x \in \mathbb{Z} | x \mod 5 = 0\} \)

- All the subsets of \(\{x \in \mathbb{Z} | x \mod 5 = 0\} \)

Cardinality

Definition: The *cardinality* of a set \(A \) is equal to the cardinality of a set \(B \), denoted \(|A| = |B| \), if and only if there is a one-to-one correspondence (*i.e.*, a bijection) from \(A \) to \(B \).

- If there is a one-to-one function (*i.e.*, an injection) from \(A \) to \(B \), the cardinality of \(A \) is less than or the same as the cardinality of \(B \) and we write \(|A| \leq |B| \).

- When \(|A| \leq |B| \) and \(A \) and \(B \) have different cardinality, we say that the cardinality of \(A \) is less than the cardinality of \(B \) and write \(|A| < |B| \).

Cardinality

Definition: A set that is either finite or has the same cardinality as the set of positive integers (\(\mathbb{Z}^+ \)) is called *countable*. A set that is not countable is *uncountable*.

- \(\{x \in \mathbb{Z} | x \mod 5 = 0, \text{ and } 0 < x \leq 100\} \)
 - 20 elements: 5, 10, 15, … 100

- \(\{x \in \mathbb{Z} | x \mod 5 = 0\} \)
 - Infinite, you can list them out in an ordered way: 5, 10, 15, … “countable set”

- All the subsets of \(\{x \in \mathbb{Z} | x \mod 5 = 0\} \)
 - Infinite, you CANNOT list them all out in an ordered way “uncountable set”
Cardinality

- **Definition:** A set that is either finite or has the same cardinality as the set of positive integers (\mathbb{Z}^+) is called **countable.** A set that is not countable is **uncountable.**

- $\{x \in \mathbb{Z}|x \text{ mod } 5 = 0\}$ **countable**

- All subsets of $\{x \in \mathbb{Z}|x \text{ mod } 5 = 0\}$ **uncountable**

- A set that is not countable is **uncountable.**

- When an infinite set is countable (**countably infinite**) its cardinality is \aleph_0 (where \aleph is aleph, the 1st letter of the Hebrew alphabet). We write $|S| = \aleph_0$ and say that S has cardinality “aleph null.”

Showing that a Set is Countable

- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).

- The reason for this is that a one-to-one correspondence f from the set of positive integers to a set S can be expressed in terms of a sequence $a_1, a_2, \ldots, a_n, \ldots$ where $a_1 = f(1), a_2 = f(2), \ldots, a_n = f(n), \ldots$

Hilbert’s Grand Hotel

The Grand Hotel (example due to David Hilbert) has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

Explanation: Because the rooms of Grand Hotel are countable, we can list them as Room 1, Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room 2, the guest in Room 2 to Room 3, and in general the guest in Room n to Room $n+1$, for all positive integers n. This frees up Room 1, which we assign to the new guest, and all the current guests still have rooms.

The hotel can also accommodate a countable number of new guests, all the guests on a countable number of buses where each bus contains a countable number of guests.
Showing that a Set is Countable

Example 1: Show that the set of positive even integers E is a countable set.
Solution: Let $f(x) = 2x$.

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
2 & 4 & 6 & 8 & 10 & 12 \\
\end{array}
\]

Then f is a bijection from \mathbb{N} to E since f is both one-to-one and onto. To show that it is one-to-one, suppose that $f(n) = f(m)$. Then $2n = 2m$, and so $n = m$. To see that it is onto, suppose that t is an even positive integer. Then $t = 2k$ for some positive integer k and $f(k) = t$.

Example 2: Show that the set of integers \mathbb{Z} is countable.
Solution: Can list in a sequence:

\[0, 1, -1, 2, -2, 3, -3, \ldots\]

Or can define a bijection from \mathbb{N} to \mathbb{Z}:
\- When n is even: $f(n) = n/2$
\- When n is odd: $f(n) = -(n-1)/2$

\[f(1) \text{ to } 0, f(2) \text{ to } 1, f(3) \text{ to } -1, f(4) \text{ to } 2, f(5) \text{ to } -2, \ldots\]

The Positive Rational Numbers are Countable

- Definition: A rational number can be expressed as the ratio of two integers p and q such that $q \neq 0$.
 \- $\frac{1}{4}$ is a rational number
 \- $\sqrt{2}$ is not a rational number.

Example 3: Show that the positive rational numbers are countable.
Solution: The positive rational numbers are countable since they can be arranged in a sequence:

\[r_1, r_2, r_3, \ldots\]
Does this work?

• For p/q
 – List all those numbers with q=1
 • 1/1, 2/1, 3/1, 4/1, 5/1, …
 – Then list all those numbers with q=2
 • 1/2, 2/2, 2/3, 2/4, 2/5, …
 – Then list all those numbers with q=3, etc

Does this work?

• For p/q
 – List all those numbers with q=1
 • 1/1, 2/1, 3/1, 4/1, 5/1, …
 – Then list all those numbers with q=2
 • 1/2, 2/2, 2/3, 2/4, 2/5, …
 – Then list all those numbers with q=3, etc

– Doesn’t work, infinite in too many directions!

Solution for listing out all p/q

• List all s.t.
 p+q=2
 1 2 3 4 5 ...

• Then all s.t.
 p+q=3
 1 2 3 4 5 ...

• Then all s.t.
 p+q=4
 1 2 3 4 5 ...

• Etc

• Why does this work?

Example - Strings

• Show that the set S of strings over the alphabet {0,1} is countable.

• What is S? Is S infinite?

• Solution:
Example - Strings

• Show that the set S of strings over the alphabet \{0,1\} is countable.
• What is S? Is S infinite?
 \[S = \{010, 1101, ..., 11001010, ... \} \]
• **Solution:**
 • List out all the strings of length 0, then 1, then 2, etc. There are a finite number of each
 • $S = \{ \lambda, 0, 1, 00, 01, 10, 11, 000, ... \}$
 • $f(\lambda) = 1, f(0) = 2, f(1) = 3, f(00) = 4, ...$

Example: Is the set of all Java programs countable?

• $\Sigma = \text{the set of all symbols in Java programs}$
• $S = \text{the set of all strings over the alphabet}$

Example: Is the set of all Java programs countable?

• Yes
• **Solution:**
 • $\Sigma = \text{the set of all symbols in Java programs}$
 - $\Sigma = \{a, b, ..., z, 0, 1, 2, ..., 9, (,), {, }, =, +, ...\}$
 - Σ is finite
 • S is the set of all strings over the alphabet
 • $J = \{ p \in S \mid p \text{ is a valid Java program} \}$
 • List out all the strings in S and if they compile (then a valid Java program), put them in J

The Real numbers are uncountable

• Proof(sketch) by diagonalization
• Suppose we can list out all the real numbers without missing any of them.
• List out all real numbers
• Claim we missed one!
• There is a number whose ith digit is different from the ith digit in the ith number.

 1 \leftrightarrow 0.397204817...
 2 \leftrightarrow 0.526613809...
 3 \leftrightarrow 0.498310123...
 4 \leftrightarrow 0.275418331...
 5 \leftrightarrow 0.002200025...
 6 \leftrightarrow 0.999904681...
 ...

• List out all real numbers
• Claim we missed one!
• There is a number whose ith digit is different from the ith digit in the ith number.
• Contradiction!
• Thus real numbers are not countable

 1 \leftrightarrow 0.597204817...
 2 \leftrightarrow 0.526613809...
 3 \leftrightarrow 0.498310123...
 4 \leftrightarrow 0.275418331...
 5 \leftrightarrow 0.002200025...
 6 \leftrightarrow 0.999904681...
 ...

Matrices

• Examples:
 – Graph Theory - Express which vertices of a graph are connected by edges
 – Graphics
 • Represent a 3D object with a matrix
 • Project a 3D object onto a 2D screen
 • Optimal curve fitting
 – Transportation systems.
 – Communication networks
 – Economics and Game Theory
• For now, definition and basic operations

Definition: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix.

 – The plural of matrix is matrices.
 – A matrix with the same number of rows as columns is called square.
 – Two matrices are equal if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal.

 3×2 matrix

\[
\begin{bmatrix}
 1 & 1 \\
 0 & 2 \\
 1 & 3
\end{bmatrix}
\]
Notation

• Let \(m \) and \(n \) be positive integers and let

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

• The \(i \)th row of \(A \) is the \(1 \times n \) matrix \([a_{i1}, a_{i2}, \ldots, a_{in}]\).

• The \(j \)th column of \(A \) is the \(m \times 1 \) matrix:

\[
\begin{bmatrix}
 a_{1j} \\
 a_{2j} \\
 \vdots \\
 a_{mj}
\end{bmatrix}
\]

• The \((i,j)\)th element or entry of \(A \) is the element \(a_{ij} \). We can use \(A = [a_{ij}] \) to denote the matrix with its \((i,j)\)th element equal to \(a_{ij} \).

Matrix Arithmetic: Addition

Definition: Let \(A = [a_{ij}] \) and \(B = [b_{ij}] \) be \(m \times n \) matrices. The sum of \(A \) and \(B \), denoted by \(A + B \), is the \(m \times n \) matrix that has \(a_{ij} + b_{ij} \) as its \((i,j)\)th element. In other words,

\[
A + B = [a_{ij} + b_{ij}].
\]

Example:

\[
\begin{bmatrix}
 1 & 0 & -1 \\
 2 & 2 & -3 \\
 3 & 4 & 0
\end{bmatrix}
+ \begin{bmatrix}
 3 & 4 & -1 \\
 1 & -3 & 0 \\
 -1 & 1 & 2
\end{bmatrix}
= \begin{bmatrix}
 4 & 4 & -2 \\
 3 & -1 & -3 \\
 2 & 5 & 2
\end{bmatrix}
\]

Note that matrices of different sizes can NOT be added.

Matrix Multiplication

Definition: Let \(A \) be an \(m \times k \) matrix and \(B \) be a \(k \times n \) matrix. The product of \(A \) and \(B \), denoted by \(AB \), is the \(m \times n \) matrix that has its \((i,j)\)th element equal to the sum of the products of the corresponding elements from the \(i \)th row of \(A \) and the \(j \)th column of \(B \). In other words, if \(AB = [c_{ij}] \) then \(c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj} \).

Example:

\[
\begin{bmatrix}
 1 & 0 & 4 \\
 2 & 1 & 1 \\
 3 & 1 & 0 \\
 0 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
 2 & 4 \\
 1 & 1 \\
 3 & 0
\end{bmatrix}
= \begin{bmatrix}
 14 & 4 \\
 8 & 9 \\
 7 & 13 \\
 8 & 2
\end{bmatrix}
\]

undefined when number of columns in the first matrix is not the same as number of rows in the second.

Definition: Let \(A \) be an \(n \times k \) matrix and \(B \) be a \(k \times n \) matrix. The product of \(A \) and \(B \), denoted by \(AB \), is the \(m \times n \) matrix that has its \((i,j)\)th element equal to the sum of the products of the corresponding elements from the \(i \)th row of \(A \) and the \(j \)th column of \(B \). In other words, if \(AB = [c_{ij}] \) then \(c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj} \).

Example:

\[
\begin{bmatrix}
 1 & 0 & 4 \\
 2 & 1 & 1 \\
 3 & 1 & 0 \\
 0 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
 2 & 4 \\
 1 & 1 \\
 3 & 0
\end{bmatrix}
= \begin{bmatrix}
 14 & 4 \\
 8 & 9 \\
 7 & 13 \\
 8 & 2
\end{bmatrix}
\]

undefined when number of columns in the first matrix is not the same as number of rows in the second.
Illustration of Matrix Multiplication

- The Product of $A = [a_{ij}]$ and $B = [b_{ij}]$

\[
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1k} \\
a_{21} & a_{22} & \cdots & a_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mk}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
b_{k1} & b_{k2} & \cdots & b_{kj} & \cdots & b_{kn}
\end{bmatrix}
\]

\[
AB = \begin{bmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m1} & c_{m2} & \cdots & c_{mn}
\end{bmatrix}
\]

$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj}$

Example use of Matrix Multiplication

- Solving set of linear equations

\[
\begin{align*}
J + M + S &= 100 \\
-J + S &= 40 \\
J + M - S &= 0
\end{align*}
\]

\[
\begin{bmatrix}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & -1
\end{bmatrix}\begin{bmatrix}
J \\
M \\
S
\end{bmatrix} = \begin{bmatrix}
100 \\
40 \\
0
\end{bmatrix}
\]

Is Matrix Multiplication Commutative

Example: Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

Does $AB = BA$?

\[
AB = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \quad BA = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}
\]

$AB \neq BA$
Identity Matrix and Powers of Matrices

Definition: The *identity matrix of order* n is the $m \times n$ matrix $I_n = [\delta_{ij}]$, where $\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$.

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$AI_n = I_mA = A$$

when A is an $m \times n$ matrix.

Powers of square matrices can be defined. When A is an $n \times n$ matrix, we have:

$$A^0 = I_n \quad A^r = AAA\cdots A$$

r times

Transposes of Matrices

Definition: Let $A = [a_{ij}]$ be an $m \times n$ matrix. The *transpose* of A, denoted by A^t, is the $n \times m$ matrix obtained by interchanging the rows and columns of A.

If $A^t = [b_{ij}]$, then $b_{ij} = a_{ji}$ for $i = 1,2,\ldots,n$ and $j = 1,2,\ldots,m$.

The transpose of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ is the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.